77 resultados para Electronics in military engineering.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electric energy demand has been growing constantly as the global population increases. To avoid electric energy shortage, renewable energy sources and energy conservation are emphasized all over the world. The role of power electronics in energy saving and development of renewable energy systems is significant. Power electronics is applied in wind, solar, fuel cell, and micro turbine energy systems for the energy conversion and control. The use of power electronics introduces an energy saving potential in such applications as motors, lighting, home appliances, and consumer electronics. Despite the advantages of power converters, their penetration into the market requires that they have a set of characteristics such as high reliability and power density, cost effectiveness, and low weight, which are dictated by the emerging applications. In association with the increasing requirements, the design of the power converter is becoming more complicated, and thus, a multidisciplinary approach to the modelling of the converter is required. In this doctoral dissertation, methods and models are developed for the design of a multilevel power converter and the analysis of the related electromagnetic, thermal, and reliability issues. The focus is on the design of the main circuit. The electromagnetic model of the laminated busbar system and the IGBT modules is established with the aim of minimizing the stray inductance of the commutation loops that degrade the converter power capability. The circular busbar system is proposed to achieve equal current sharing among parallel-connected devices and implemented in the non-destructive test set-up. In addition to the electromagnetic model, a thermal model of the laminated busbar system is developed based on a lumped parameter thermal model. The temperature and temperature-dependent power losses of the busbars are estimated by the proposed algorithm. The Joule losses produced by non-sinusoidal currents flowing through the busbars in the converter are estimated taking into account the skin and proximity effects, which have a strong influence on the AC resistance of the busbars. The lifetime estimation algorithm was implemented to investigate the influence of the cooling solution on the reliability of the IGBT modules. As efficient cooling solutions have a low thermal inertia, they cause excessive temperature cycling of the IGBTs. Thus, a reliability analysis is required when selecting the cooling solutions for a particular application. The control of the cooling solution based on the use of a heat flux sensor is proposed to reduce the amplitude of the temperature cycles. The developed methods and models are verified experimentally by a laboratory prototype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this research was to develop a piping stress analysis guideline to be widely used in Neste Jacobs Oy’s domestic and foreign projects. The company’s former guideline to performing stress analysis was partial and lacked important features, which were to be fixed through this research. The development of the guideline was based on literature research and gathering of existing knowledge from the experts in piping engineering. Case study method was utilized by performing stress analysis on an existing project with help of the new guideline. Piping components, piping engineering in process industry, and piping stress analysis were studied in the theory section of this research. Also, the existing piping standards were studied and compared with one another. By utilizing the theory found in literature and the vast experience and know-how collected from the company’s employees, a new guideline for stress analysis was developed. The guideline would be widely used in various projects. The purpose of the guideline was to clarify certain issues such as which of the piping would have to be analyzed, how are different material values determined and how will the results be reported. As a result, an extensive and comprehensive guideline for stress analysis was created. The new guideline more clearly defines formerly unclear points and creates clear parameters to performing calculations. The guideline is meant to be used by both new and experienced analysts and with its aid, the calculation process was unified throughout the whole company’s organization. Case study was used to exhibit how the guideline is utilized in practice, and how it benefits the calculation process.