87 resultados para AMAZONIAN TREE COMMUNITIES
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
This study examines the aftermath of mass violence in local communities. Two rampage school shootings that occurred in Finland are analyzed and compared to examine the ways in which communities experience, make sense of, and recover from sudden acts of mass violence. The studied cases took place at Jokela High School, in southern Finland, and at a polytechnic university in Kauhajoki, in western Finland, in 2007 and 2008 respectively. Including the perpetrators, 20 people lost their lives in these shootings. These incidents are part of the global school shooting phenomenon with increasing numbers of incidents occurring in the last two decades, mostly in North America and Europe. The dynamic of solidarity and conflict is one of the main themes of this study. It builds upon previous research on mass violence and disasters which suggests that solidarity increases after a crisis, and that this increase is often followed by conflict in the affected communities. This dissertation also draws from theoretical discussions on remembering, narrating, and commemorating traumatic incidents, as well as the idea of a cultural trauma process in which the origins and consequences of traumas are negotiated alongside collective identities. Memorialization practices and narratives about what happened are vital parts of the social memory of crises and disasters, and their inclusive and exclusive characteristics are discussed in this study. The data include two types of qualitative interviews; focused interviews with 11 crisis workers, and focused, narrative interviews with 21 residents of Jokela and 22 residents of Kauhajoki. A quantitative mail survey of the Jokela population (N=330) provided data used in one of the research articles. The results indicate that both communities experienced a process of simultaneous solidarity and conflict after the shootings. In Jokela, the community was constructed as a victim, and public expressions of solidarity and memorialization were promoted as part of the recovery process. In Kauhajoki, the community was portrayed as an incidental site of mass violence, and public expressions of solidarity by distant witnesses were labeled as unnecessary and often criticized. However, after the shooting, the community was somewhat united in its desire to avoid victimization and a prolonged liminal period. This can be understood as a more modest and invisible process of “silent solidarity”. The processes of enforced solidarity were partly made possible by exclusion. In some accounts, the family of the perpetrator in Jokela was excluded from the community. In Kauhajoki, the whole incident was externalized. In both communities, this exclusion included associating the shooting events, certain places, and certain individuals with the concept of evil, which helped to understand and explain the inconceivable incidents. Differences concerning appropriate emotional orientations, memorialization practices and the pace of the recovery created conflict in both communities. In Jokela, attitudes towards the perpetrator and his family were also a source of friction. Traditional gender roles regarding the expression of emotions remained fairly stable after the school shootings, but in an exceptional situation, conflicting interpretations arose concerning how men and women should express emotion. The results from the Jokela community also suggest that while increased solidarity was seen as important part of the recovery process, some negative effects such as collective guilt, group divisions, and stigmatization also emerged. Based on the results, two simultaneous strategies that took place after mass violence were identified; one was a process of fast-paced normalization, and the other was that of memorialization. Both strategies are ways to restore the feeling of security shattered by violent incidents. The Jokela community emphasized remembering while the Kauhajoki community turned more to the normalization strategy. Both strategies have positive and negative consequences. It is important to note that the tendency to memorialize is not the only way of expressing solidarity, as fast normalization includes its own kind of solidarity and helps prevent the negative consequences of intense solidarity.
Resumo:
Shallow coastal areas are dynamic habitats that are affected by a variety of abiotic and biotic factors. In addition to the natural environmental stress, estuarine and coastal seagrass ecosystems are exposed to effects of climate change and other anthropogenic impacts. In this thesis the effect of different abiotic (shading stress, salinity and temperature) and biotic stressors (presence of co-occurring species) and different levels and combinations of stressors on the performance and survival of eelgrass (Zostera marina) was assessed. To investigate the importance of scale for stress responses, varying levels of biological organization (genotype, life stage, population and plant community) were studied in field and aquarium experiments. Light limitation, decreased salinity and increased temperature affected eelgrass performance negatively in papers I, II and III, respectively. While co-occurring plant species had no notable effect on eelgrass in paper IV, the presence of eelgrass increased the biomass of Potamogeton perfoliatus. The findings in papers II and III confirmed that more extreme levels of salinity and temperature had stronger impacts on plant performance compared to intermediate levels, but intermediate levels also had more severe effects on plants when they were exposed to several stressors, as illustrated in paper II. Thus, multiple stressors had negative synergetic effects. The results in papers I, II and III indicate that future changes in light climate, salinity and temperature can have serious impacts on eelgrass performance and survival. Stress responses were found to vary among genotypes, life stages and populations in papers I, II and III, respectively, emphasizing the importance of study scale. The results demonstrate that while stress in general affects seagrass productivity negatively, the severity of effects can vary substantially depending on the studied scale or level of biological organization. Eelgrass genotypes can differ in their stress and recovery processes, as observed in paper I. In paper II, eelgrass seedlings were less prone to abiotic stress compared to adult plants, but stress also decreased their survival considerably. This indicates that recruitment and re-colonization through seeds might be threatened in the future. Variation among population responses observed in paper III indicates that long-term local adaptation under differing selection pressures has caused divergence in salinity tolerance between Baltic eelgrass populations. This variability in stress tolerance observed in papers I and III suggests that some eelgrass genotypes and populations have a better capacity to adapt to changes and survive in a changing environment. Multiple stressors and biological level-specific responses demonstrate the uncertainty in predicting eelgrass responses in a changing environment. As eelgrass populations may differ in their stress tolerance both within and across regions, conservation strategies at both local and regional scales are urgently needed in order to ensure the survival of these important ecosystems.
Resumo:
The Amazonian region, the biggest rain forest of our planet, is known for its extraordinary biodiversity. Most of this diversity is still unexplored and new species of different taxa are regularly found there. In this region, as in most areas of the world, insects are some of the most abundant organisms. Therefore, studying this group is important to promote the conservation of these highly biodiverse ecosystems of the planet. Among insects, parasitoid wasps are especially interesting because they have potential for use as biodiversity indicators and biological control agents in agriculture and forestry. The parasitoid wasp family Ichneumonidae is one of the most species rich groups among the kingdom Animalia. This group is still poorly known in many areas of the world; the Amazonian region is a clear example of this situation. Ichneumonids have been thought to be species poor in Amazonia and other tropical areas. However, recent studies are suggesting that parasitoid wasps may be quite abundant in Amazonia and possibly in most tropical areas of the world. The aim of my doctoral thesis is to study the species richness and taxonomy of two of the best known ichneumonid subfamilies in the Neotropical region, Pimplinae and Rhyssinae. To do this I conducted two extensive sampling programs in the Peruvian Amazonia. I examined also a large number of Neotropical ichneumonids deposited to different natural history museums. According to the results of my thesis, the species richness of these parasitoids in the Amazonian region is considerably higher than previously reported. In my research, I firstly further develop the taxonomy of these parasitoids by describing many new species and reporting several new faunistic records (I, II, III). In this first part I focus on two genera (Xanthopimpla and Epirhyssa) which were thought to be rather species poor. My thesis demonstrates that these groups are actually rather species rich in the Amazonian region. Secondly, I concentrate on the species richness of these parasitoids in a global comparison showing that the Neotropical region and especially the Peruvian Amazonia is one of the most species rich areas of Pimpliformes ichneumonids (V). Furthermore, I demonstrate that with the data available to date no clear latitudinal gradient in species richness is visible. Thirdly, increasing the macroecological knowledge of these parasitoids I show that some previously unreported ichneumonid subfamilies are present in the Amazonian region (IV). These new insights and the results of the global comparison of ichneumonid inventories suggest that the previous belief of low diversity in the tropics is most likely related to a lack of sampling effort in the region. Overall, my research increases the knowledge of Neotropical ichneumonids highlighting the importance of Peruvian Amazonia as one of the diversity hotspots of parasitoid wasps.
Resumo:
Most of the applications of airborne laser scanner data to forestry require that the point cloud be normalized, i.e., each point represents height from the ground instead of elevation. To normalize the point cloud, a digital terrain model (DTM), which is derived from the ground returns in the point cloud, is employed. Unfortunately, extracting accurate DTMs from airborne laser scanner data is a challenging task, especially in tropical forests where the canopy is normally very thick (partially closed), leading to a situation in which only a limited number of laser pulses reach the ground. Therefore, robust algorithms for extracting accurate DTMs in low-ground-point-densitysituations are needed in order to realize the full potential of airborne laser scanner data to forestry. The objective of this thesis is to develop algorithms for processing airborne laser scanner data in order to: (1) extract DTMs in demanding forest conditions (complex terrain and low number of ground points) for applications in forestry; (2) estimate canopy base height (CBH) for forest fire behavior modeling; and (3) assess the robustness of LiDAR-based high-resolution biomass estimation models against different field plot designs. Here, the aim is to find out if field plot data gathered by professional foresters can be combined with field plot data gathered by professionally trained community foresters and used in LiDAR-based high-resolution biomass estimation modeling without affecting prediction performance. The question of interest in this case is whether or not the local forest communities can achieve the level technical proficiency required for accurate forest monitoring. The algorithms for extracting DTMs from LiDAR point clouds presented in this thesis address the challenges of extracting DTMs in low-ground-point situations and in complex terrain while the algorithm for CBH estimation addresses the challenge of variations in the distribution of points in the LiDAR point cloud caused by things like variations in tree species and season of data acquisition. These algorithms are adaptive (with respect to point cloud characteristics) and exhibit a high degree of tolerance to variations in the density and distribution of points in the LiDAR point cloud. Results of comparison with existing DTM extraction algorithms showed that DTM extraction algorithms proposed in this thesis performed better with respect to accuracy of estimating tree heights from airborne laser scanner data. On the other hand, the proposed DTM extraction algorithms, being mostly based on trend surface interpolation, can not retain small artifacts in the terrain (e.g., bumps, small hills and depressions). Therefore, the DTMs generated by these algorithms are only suitable for forestry applications where the primary objective is to estimate tree heights from normalized airborne laser scanner data. On the other hand, the algorithm for estimating CBH proposed in this thesis is based on the idea of moving voxel in which gaps (openings in the canopy) which act as fuel breaks are located and their height is estimated. Test results showed a slight improvement in CBH estimation accuracy over existing CBH estimation methods which are based on height percentiles in the airborne laser scanner data. However, being based on the idea of moving voxel, this algorithm has one main advantage over existing CBH estimation methods in the context of forest fire modeling: it has great potential in providing information about vertical fuel continuity. This information can be used to create vertical fuel continuity maps which can provide more realistic information on the risk of crown fires compared to CBH.
Resumo:
Changes in the abundance of top predators have brought about notable, cascading effects in ecosystems around the world. In this thesis, I examined several potential trophic cascades in boreal ecosystems, and their separate interspecific interactions. The main aim of the thesis was to investigate whether predators in the boreal forests have direct or indirect cascading effects on the lower trophic levels. First, I compared the browsing effects of different mammalian herbivores by excluding varying combinations of voles, hares and cervids from accessing the seedlings of silver birch (Betula pendula), Scots pine (Pinus sylvestris) and Norway spruce (Picea abies). Additionally, I studied the effect of simulated predation risk on vole browsing by using auditory cues of owls. Moving upwards on the trophic levels, I examined the intraguild interactions between the golden eagle (Aquila chrysaetos), and its mesopredator prey, the red fox (Vulpes vulpes) and the pine marten (Martes martes). To look at an entire potential trophic cascade, I further studied the combined impacts of eagles and mesopredators on the black grouse (Tetrao tetrix) and the hazel grouse (Tetrastes bonasia), predicting that the shared forest grouse prey would benefit from eagle presence. From the tree species studied, birch appears to be the most palatable one for the mammalian herbivores. I observed growth reductions in the presences of cervids and low survival associated with hares and voles, which suggests that they all weaken regeneration in birch stands. Furthermore, the simulated owl predation risk appeared to reduce vole browsing on birches in late summer, although the preferred grass forage is then old and less palatable. Browsing by voles and hares had a negative effect on the condition and survival of Scots pine, but in contrast, the impact of mammalian herbivores on spruce was found to be small, at least when more preferred food is available. I observed that the presence of golden eagles had a negative effect on the abundance of adult black grouse but a positive, protective effect on the proportion of juveniles in both black grouse and hazel grouse. Yet, this positive effect was not dependent on the abundance foxes or martens, nor did eagles seem to effectively decrease the abundance of these mesopredators. Conversely, the protection effect on grouse could arise from fear effects and also be mediated by other mesopredators. The results of this thesis provide important new information about trophic interactions in the boreal food webs. They highlight how different groups of mammalian herbivores vary in their effects on the growth and condition of different tree seedlings. Lowered cervid abundances could improve birch regeneration, which indirectly supports the idea that the key predators of cervids could cause cascading effects also in Fennoscandian forests. Owls seem to reduce vole browsing through an intimidation effect, which is a novel result of the cascading effects of owl vocalisation and could even have applications for protecting birch seedlings. In the third cascade examined in this thesis, I found the golden eagle to have a protective effect on the reproducing forest grouse, but it remains unclear through which smaller predators this effect is mediated. Overall, the results of this thesis further support the idea that there are cascading effects in the forests of Northern Europe, and that they are triggered by both direct and non‐lethal effects of predation.
Resumo:
The fall of 2013 could be characterized as a crossroad in the geopolitics of Eastern Europe, namely Ukraine. Two rivalry geopolitical projects have been developing throughout the post-Cold War years, and it seems that they reached a collision point in Ukraine; a country whose authorities have been for long switching sides between the European Union and the Russian Federation in their foreign policy commitments. The refusal/postponing to sign the Association Agreement with Brussels, an expected event by a large category of the Ukrainian society, by Yanukovich’s government led to the outset of the latter; and brought a pro-Western, anti-Russian government in Kyiv. It seems that Ukraine, after those events, has embarked definitively on the path of integration into the West (European Union and possibly NATO). The Russian Federation, who has been throughout Putin’s years engaged into the re-integration of post-Soviet space, reacted to these developments in an assertive manner by violating borders, agreements and the territorial integrity of Ukraine. Thus, the incorporation of the Crimea into the Russian Federation is the first in its kind in the post-Soviet space, despite the existence of various other conflicts that broke out in the region after the Soviet Union broke up. I will investigate in this thesis the nature of what will be labelled, in this work, the Crimean issue. I argue that the incorporation of the Crimean peninsula into the Russian Federation marks a new era in Russian geopolitical thinking that shapes, to a far extent, Russian foreign policy. Discourse analysis will be the methodological basis for this study, with a special focus on Michel Foucault’s Archaeology of Knowledge. The innovation that this research brings is the fact that it discusses Russian geopolitical discourse within the scope of Foucault’s ‘discursive tree’, with a reference to the Crimean issue. A wide range of primary sources will be consulted in this study such as presidential addresses to the Federal Assembly (2000-2014), Foreign Policy Concepts of the Russian Federation (2000, 2008), Russian maritime doctrines, as wells as Dugin’s Osnovy Geopolitiki (Foundations of Geopolitics), Mahan’s (The Influence of Sea Power Upon History, 1660–1783) and other Eurasianism related literature.
Resumo:
Fokuserande händelser är plötsliga, ovanliga och för med sig negativa konsekvenser för ett stort antal människor. Det handlar om det vi i vardagligt tal kallar kriser och katastrofer. En intensiv medierapportering i kombination med oroade medborgare gör att kriser och katastrofer är viktiga samhällspåfrestningar som beslutsfattare måste hantera. Syftet med avhandlingen är att öka förståelsen för hur fokuserande händelser påverkar samhälleliga processer. Avhandlingens två övergripande forskningsfrågor tar fasta på jämförelsen av olika typer av fokuserande händelser. För det första, skillnader i hur naturkatastrofer och katastrofer som tillkommit genom mänskligt handlade påverkar samhället, och för det andra, hur händelser med olika stark fokuseringskraft påverkar samhället. Medborgarreaktioner studeras i en experimentell laboratoriestudie, den mediala rapporteringen analyseras genom kvantitativ innehållsanalys av texter och bilder, och på den parlamentariska arenan analyseras riksdagsdebatten genom kvantitativ innehållsanalys. De temaområden som identifieras i den teoretiska referensramen ligger till grund för analysen och tar fasta på de känslor som händelsen ger upphov till, hur händelsen kontextualiseras (framing), skuldbeläggning samt möjliga lösningar som förs fram. Resultatet från studierna visar att skillnader mellan olika typer av händelser syns tydligast hos medborgare, uttryckt genom starkare emotionella reaktioner för händelser med stark fokusering, och på den mediala arenan, genom mer utrymme för dessa händelser. Då kriser och katastrofer med olika stark fokuseringskraft når riksdagen får de däremot ett relativt likadant mottagande. I jämförelsen mellan naturkatastrofer och människoskapade händelser visar resultaten att naturkatastrofer ofta diskuteras som specifika händelser, medan människoskapade händelser placeras i en bredare samhällelig kontext och diskuteras under längre tid. Avhandlingen bidrar till diskussionen om hur våra känslor och vår kognition samspelar i krissituationer. De omedvetna signaler som vår kropp ger oss gällande hur vi ska reagera på en farlig situation kan påverka om vi är rädda, oroliga eller till och med positivt inställda. I ljuset av de tre studierna är det tydligt att de emotionella reaktionerna minskar ju högre upp i den politiska processen vi kommer. Trots att medborgare och medier reagerar starkt är de emotionella reaktionerna på den politiska arenan relativt milda och skuldbeläggningen näst intill icke-existerande.