91 resultados para 3D-mallintaminen
Resumo:
Työn aiheena on vaihteen pienoismallin suunnittelu ja toteutus 3d-tulostusta hyväksi käyttäen. Pienoismalli tehdään Moventas Gears Oy:n suunnittelemasta tuuliturbiinin vaihteesta. Vaihteen pienentämisestä johtuen malliin on suunniteltava uudet laakeripesät ja hammaspyörät. 3D-tulostuksen ja pienoismallin pienen koon ansiosta vaihdetta voidaan yksinkertaistaa suuresti ja näin vähentää tulostettavien osien määrää. Lisäksi työssä selvitetään, mitä ongelmia 3D-tulostus tuo valmistukseen ja suunnitteluun. Työn kirjallisessa osassa selvennetään planeettavaihteen toimintaa yleisesti sekä esitellään Exceed Series 3+ vaihdetta. Lisäksi kerrotaan 3D-tulostuksesta, sen periaatteesta, erilaisista tulostusmenetelmistä, tulostinlaitteesta ja mahdollisista ongelmista tulostuksessa. Kokeellinen osa koostuu pienoismallin suunnittelusta ja valmistuksesta. Valmistuksessa olleiden virheiden takia muutama osa jouduttiin tulostamaan uudelleen. Muutamia osia jouduttiin myös hieman jälkikäsittelemään tulostuksen jälkeen, jotta malli saatiin kasattua. Ongelmakohdaksi muodostui tulostimen ohjelmisto ja tulostustiedostot. Tulostusprosessi sujui kuitenkin hyvin. Lopputuloksena saatiin toimiva pienoismalli. 3D-tulostus toimii hyvin monimutkaisten kappaleiden tulostuksessa. Tulostuksen hinta nousi kuitenkin varsin korkeaksi. Tulostuslaitteistosta riippuen tulostuksen voisi mahdollisesti suorittaa myös halvemmallakin.
Resumo:
Additive manufacturing, or 3D printing, is globally one of most interesting area in developing of manufacturing technologies. This technology is suitable for fabrication off industrial products and it interests actors in fields of computer sciences, economics, medical sciences and design&arts. Additive manufacturing is often referred as third industrial revolution: first revolution was invention of steam engines in 18th century and second was industrial revolution started by Henry Ford in 1920s. Companies should be able to test suitability of their products for additive manufacturing and 3D printing but also how much better products could be when products are totally re-designed so that all potential of this new technology can be utilized. This is where education has its importance; new generations who enter working life should be educated to know of additive manufacturing and 3D printing, its advantages but also of it limits. There has to be also possibility to educate industry and people already working there, so that industrial implementation could be done successfully. This is especially very valid for Finland. Education is strongly needed so that Finnish industry can maintain its competence in global markets. Role of education is extremely important when a new technology is industrially implemented. Additive manufacturing and 3D printing offers freedom to design new products, production and generally ways of doing things. Development, planning and execution of education for additive manufacturing and 3D printing is challenging as this area develops very fast. New innovations are coming almost every month. Planning of education for additive manufacturing and 3D printing requires collection pieces of data from various of sources. Additive manufacturing and 3D printing industry and its development has to be followed frequently, and material for additive manufacturing and 3D printing has to be renewed frequently.
Resumo:
Valmistavan teollisuuden kiristyvät vaatimukset suunnittelusta markkinoille -ajassa (engl. time-to-market), laadussa, kustannustehokkuudessa ja turvallisuudessa luovat paineita uusien toimintatapojen etsimisessä. Usein laitteiston ohjausalgoritmeja ei ole mahdollista testata todellisen laitteiston kanssa, vaan ainoaksi ennakoivaksi vaihtoehdoksi jää todellisen laitteiston virtuaalinen mallintaminen. Eräs uusista toimintavoista on virtuaalinen käyttöönotto, jossa tuotantolinja tai laitteisto mallinnetaan ja sen käyttäytymistä simuloidaan ohjausalgoritmien parantamista ja todentamista varten. Tämän diplomityön tavoitteena oli toteuttaa virtuaalinen käyttöönottoympäristö, jolla laitteiston 3D-mallinnettua virtuaalista mallia voidaan ohjata reaaliajassa todellisen laitteiston ohjauslaitteistolla. Käyttöönottoympäristön toteuttamisen lopullisena tavoitteena on tutkia, millaisia hyötyjä sillä voidaan saavuttaa Outotec (Finland) Oy:n automaatiojärjestelmien suunnittelussa ja käyttöönotossa kiristyvien vaatimusten täyttämiseksi. Työssä toteutetulla käyttöönottoympäristöllä pystytään simuloimaan 3D-mallinnetun laitteiston osan toimintaa reaaliajassa. Todellisen laitteiston ominaisuuksista määritettyjä vaatimuksia ei kustannussyistä täytetty, sillä ennen sitä haluttiin varmistua valitun alustan ominaisuuksista, toimivuudesta ja soveltuvuudesta. Toteutuksen katsotaan kuitenkin täyttävän pehmeän reaaliaikaisuuden kriteerin noin 40 ms aikatasolla ja 80 ms reaktioajalla. Toteutettu virtuaalinen käyttöönottoympäristö osoittautui toimivaksi ja soveltuvaksi, sekä sen todettiin tuovan potentiaalisia hyötyjä Outotec (Finland) Oy:lle, esimerkiksi kosketusnäyttöjen visualisoinnin parannus, hybridikäyttöönottomahdollisuus sekä automaatio-ohjauksien kehittäminen. Työn perusteella arvioidaan onko Outotec:lla tarvetta jatkaa valitulla alustalla todellisen laitteiston aikavaatimukset täyttävään reaaliaika-toteutukseen, jota työssä esitellään.
Resumo:
In this doctoral thesis, a tomographic STED microscopy technique for 3D super-resolution imaging was developed and utilized to observebone remodeling processes. To improve upon existing methods, wehave used a tomographic approach using a commercially available stimulated emission depletion (STED) microscope. A certain region of interest (ROI) was observed at two oblique angles: one at a standard inverted configuration from below (bottom view) and another from the side (side view) via a micro-mirror positioned close to the ROI. The two viewing angles were reconstructed into a final tomogram. The technique, named as tomographic STED microscopy, was able to achieve an axial resolution of approximately 70 nm on microtubule structures in a fixed biological specimen. High resolution imaging of osteoclasts (OCs) that are actively resorbing bone was achieved by creating an optically transparent coating on a microscope coverglass that imitates a fractured bone surface. 2D super-resolution STED microscopy on the bone layer showed approximately 60 nm of lateral resolution on a resorption associated organelle allowing these structures to be imaged with super-resolution microscopy for the first time. The developed tomographic STED microscopy technique was further applied to study resorption mechanisms of OCs cultured on the bone coating. The technique revealed actin cytoskeleton with specific structures, comet-tails, some of which were facing upwards and some others were facing downwards. This, in our opinion, indicated that during bone resorption, an involvement of the actin cytoskeleton in vesicular exocytosis and endocytosis is present. The application of tomographic STED microscopy in bone biology demonstrated that 3D super-resolution techniques can provide new insights into biological 3D nano-structures that are beyond the diffraction-limit when the optical constraints of super-resolution imaging are carefully taken into account.
Resumo:
Tämä diplomityö tehtiin Valmet Technologies Oy:n Järvenpään toimipisteelle. Työn tavoitteena oli tutkia miten pituusleikkureiden 3D-suunnittelua voidaan tehostaa hyödyntämällä uuden 3D-CAD -järjestelmän ominaisuuksia optimaalisesti. Työ koostuu teoriaosuudesta, haastattelututkimuksesta sekä käytännön osuudesta. Teoriaosuudessa perehdytään pituusleikkurin toimintaan ja rakenteeseen, 3D-suunnittelun teoriaan sekä CATIA-järjestelmään. Teoriaosuudessa etsitään myös uusia näkökulmia 3D-suunnitteluun. Haastattelututkimuksessa kartoitetaan nykyinen suunnitteluprosessi, suunnittelun kehitettäviä kohteita, sekä käytössä olevia suunnittelumenetelmiä, jotka ovat todettu toimiviksi. Haastattelututkimuksessa haastatellaan Valmet Technologies Oy:n Järvenpään toimipisteessä työskenteleviä pituusleikkureiden pääsuunnittelijoita sekä heidän esimiehiään. Lisäksi erillisten haastattelujen avulla kerätään kokemuksia CATIA V6 -ohjelmiston käytöstä sekä suunnitteluohjelmiston vaihtumisesta. Käytännön osuuden tavoitteena on arvioida pituusleikkurin parametroitujen mallirakenteiden siirtämiseen sekä korjauksiin kuluvia aikamääriä kyseisiin toimenpiteisiin tarvittavien resurssien määrittämiseksi. Käytännön osuudessa siirretään kaksi Valmet OptiWin Drum Compact -pituusleikkurin parametroitua osakokonaisuutta uuteen CAD-järjestelmään ja niille suoritetaan tarvittavat korjaustoimenpiteet Tutkimuksen tulosten perusteella yhteisen mallinnusmetodologian puuttuminen on merkittävin kehityskohde suunnittelun kehittämisessä. Lopuksi luotiin kehitysehdotukset sekä implementointisuunnitelma, joiden avulla pituusleikkureiden 3D-suunnittelua voidaan kehittää ja CATIA V6 -ohjelmisto voidaan ottaa käyttöön tehokkaasti.
Resumo:
Additive manufacturing (shortened as AM), or more commonly 3D printing, consists of wide variety of different modern manufacturing technologies. AM is based on direct printing of a digital 3D model to a final product which is fabricated adding material layer by layer. This is from where term additive manufacturing has its origin. It is not only material what is added, but it is also value, properties etc. which are added. AM enables production of different and even better products compared to conventional manufacturing technologies. An estimation of potential of additive manufacturing can be gathered by considering the potential of laser cutting, which is one of the most widely used modern manufacturing technologies. This technique has been used over 40 years, and whole market around this technology is at the moment c. four billion euros and yearly growth is around 10 %. One factor affecting this success of laser cutting is that laser cutting enables radical improvements to products made of flat sheet. AM and 3D printing will do the same for three dimensional parts. Laser devices, which are at the moment used in 3D printing, are globally at the moment only around 1% of all laser devices used in any fabrication technology, so even with a cautious estimate the potential growth of at least 100 % is coming in next few years. Role of education is very important, when this kind of modern technology is industrially implemented. When both generation entering to work life and also generation who has been a while in work life understands new technology, its potential and limitations, this is the point when also product design can be rethought Potential of product design is driving force for wide use of additive manufacturing and 3D printing. Utilization of additive manufacturing and 3D printing is also opportunity for Finland and Finnish industry. This technology can save Finnish manufacturing industry. This technique has stron potential, as Finland has traditionally strong industrial know-how and good ICT knowledge.
Resumo:
Vakaviin reaktorionnettomuuksiin liittyviä ilmiöitä on tutkittu jo 1980-luvulta lähtien ja tutkitaan edelleen. Ilmiöt liittyvät reaktorisydämen ja muiden paineastian sisäisten materi-aalien sulamiseen sekä reagointiin veden ja höyryn kanssa. Ilmiöt on myös tärkeää tuntea ja niiden esiintymistä mallintaa käytössä olevilla laitoksilla, jotta voidaan varmistua turval-lisuusjärjestelmien riittävyydestä. Olkiluoto 1 ja 2 laitosten käyttölupa uusitaan vuoteen 2018 mennessä. Lupaprosessiin liit-tyy analyysejä, joissa mallinnetaan laitosten toimintaa vakavassa reaktorionnettomuudessa. Näiden analyysien tekoon Teollisuuden Voima Oyj on käyttänyt ohjelmaa nimeltä MEL-COR jo vuodesta 1994 lähtien. Käytössä on ollut useita eri ohjelmaversioita ja viimeisin niistä on 1.8.6, joka riittää vielä tulevan käyttöluvan uusintaprojektiin liittyvien analyysien tekoon. MELCOR:n vanhaa 1.8.6 ohjelmaversioita ei kuitenkaan enää päivitetä, joten siirtyminen uudempaan 2.1 versioon on tulevaisuudessa välttämätöntä. Uusimman versiopäivityksen yhteydessä on kuitenkin muuttunut koko ohjelman lähdekoodi ja vanhojen laitosmallien käyttö uudessa ohjelmaversiossa vaatii tiedostojen konvertoinnin. Tässä työssä esitellään MELCOR-version 2.1 ominaisuuksia ja selvitetään, mitä 1.8.6 versioon luotujen laitosmal-lien käyttöönotto versiossa 2.1 vaatii. Vaatimusten määrittelemiseksi laitosmalleilla tehdään ajoja molemmilla ohjelmaversioilla ja erilaisilla onnettomuuden alkutapahtuman määrittelyillä. Tulosten perusteella arvioidaan ohjelmaversioiden eroja ja pohditaan mitä puutteita laitosmalleihin konversion jälkeen jää. Näiden perusteella arvioidaan mitä jatkotoimenpiteitä konversio vaatii.