86 resultados para permanent wilting point
Resumo:
This thesis presents point-contact measurements between superconductors (Nb, Ta, Sn,Al, Zn) and ferromagnets (Co, Fe, Ni) as well as non-magnetic metals (Ag, Au, Cu, Pt).The point contacts were fabricated using the shear method. The differential resistanceof the contacts was measured either in liquid He at 4.2 K or in vacuum in a dilutionrefrigerator at varying temperature down to 0.1 K. The contact properties were investigatedas function of size and temperature. The measured Andreev-reflection spectrawere analysed in the framework of the BTK model – a three parameter model that describescurrent transport across a superconductor - normal conductor interface. Theoriginal BTK model was modified to include the effects of spin polarization or finitelifetime of the Cooper pairs. Our polarization values for the ferromagnets at 4.2 K agree with the literature data, but the analysis was ambiguous because the experimental spectra both with ferromagnets and non-magnets could be described equally well either with spin polarization or finite lifetime effects in the BTK model. With the polarization model the Z parametervaries from almost 0 to 0.8 while the lifetime model produces Z values close to 0.5. Measurements at lower temperatures partly lift this ambiguity because the magnitude of thermal broadening is small enough to separate lifetime broadening from the polarization. The reduced magnitude of the superconducting anomalies for Zn-Fe contacts required an additional modification of the BTK model which was implemented as a scaling factor. Adding this parameter led to reduced polarization values. However, reliable data is difficult to obtain because different parameter sets produce almost identical spectra.
Resumo:
Cardiac troponins (cTn) I and T are the current golden standard biochemical markers in the diagnosis and risk stratification of patients with suspected acute coronary syndrome. During the past few years, novel assays capable of detecting cTn‐concentrations in >50% of apparently healthy individuals have become readily available. With the emerging of these high sensitivity cTn assays, reductions in the assay specificity have caused elevations in the measured cTn levels that do not correlate with the clinical picture of the patient. The increased assay sensitivity may reveal that various analytical interference mechanisms exist. This doctoral thesis focused on developing nanoparticle‐assisted immunometric assays that could possibly be applied to an automated point‐of‐care system. The main objective was to develop minimally interference‐prone assays for cTnI by employing recombinant antibody fragments. Fast 5‐ and 15‐minute assays for cTnI and D‐dimer, a degradation product of fibrin, based on intrinsically fluorescent nanoparticles were introduced, thus highlighting the versatility of nanoparticles as universally applicable labels. The utilization of antibody fragments in different versions of the developed cTnI‐assay enabled decreases in the used antibody amounts without sacrificing assay sensitivity. In addition, the utilization of recombinant antibody fragments was shown to significantly decrease the measured cTnI concentrations in an apparently healthy population, as well as in samples containing known amounts of potentially interfering factors: triglycerides, bilirubin, rheumatoid factors, or human anti‐mouse antibodies. When determining the specificity of four commercially available antibodies for cTnI, two out of the four cross‐reacted with skeletal troponin I, but caused crossreactivity issues in patient samples only when paired together. In conclusion, the results of this thesis emphasize the importance of careful antibody selection when developing cTnI assays. The results with different recombinant antibody fragments suggest that the utilization of antibody fragments should strongly be encouraged in the immunoassay field, especially with analytes such as cTnI that require highly sensitive assay approaches.
Resumo:
Analytical calculation methods for all the major components of the synchronous inductance of tooth-coil permanentmagnet synchronous machines are reevaluated in this paper. The inductance estimation is different in the tooth-coil machine compared with the one in the traditional rotating field winding machine. The accuracy of the analytical torque calculation highly depends on the estimated synchronous inductance. Despite powerful finite element method (FEM) tools, an accurate and fast analytical method is required at an early design stage to find an initialmachine design structure with the desired performance. The results of the analytical inductance calculation are verified and assessed in terms of accuracy with the FEM simulation results and with the prototype measurement results.
Resumo:
Permanent magnet materials are nowadays widely used in the electrical machine manufacturing industry. Eddy current loss models of permanent magnets used in electrical machines are frequently discussed in research papers. In magnetic steel materials we have, in addition to eddy current losses, hysteresis losses when AC or a rotating flux travels through the material. Should a similar phenomenon also be taken into account in calculating the losses of permanent magnets? Actually, every now and then authors seem to assume that some significant hysteresis losses are present in rotating machine PMs. This paper studies the mechanisms of possible hysteresis losses in PMs and their role in PMs when used in rotating electrical machines.
Resumo:
Traction motor design significantly differs from industrial machine design. The starting point is the load cycle instead of the steady-state rated operation point. The speed of the motor varies from zero to very high speeds. At low speeds, heavy overloading is used for starting, and the field-weakening region also plays an important role. Finding a suitable fieldweakening point is one of the important design targets. At the lowest speeds, a high torque output is desired, and all current reserves of the supplying converter unit are used to achieve the torque. In this paper, a 110-kW 2.5-p.u. starting torque and a maximum 2.5-p.u. speed permanent-magnet traction motor will be studied. The field-weakening point is altered by varying the number of winding turns of machine. One design is selected for prototyping. Theoretical results are verified by measurements.
Resumo:
Permanent magnet synchronous machines with fractional-slot non-overlapping windings (FSPMSM), also known as tooth-coil winding permanent magnet synchronous machines (TCW PMSM), have been under intensive research during the latest decade. There are many optimization routines explained and implemented in the literature in order to improve the characteristics of this machine type. This paper introduces a new technique for torque ripple minimization in TCW PMSM. The source of torque harmonics is also described. The low order torque harmonics can be harmful for a variety of applications, such as direct drive wind generators, direct drive light vehicle electrical motors, and for some high precision servo applications. The reduction of the torque ripple harmonics with the lowest orders (6th and 12th) is realized by machine geometry optimization technique using finite element analysis (FEA). The presented optimization technique includes the stator geometry adjustment in TCW PMSMs with rotor surface permanent magnets and with rotor embedded permanent magnets. Influence of the permanent magnet skewing on the torque ripple reduction and cogging torque elimination was also investigated. It was implemented separately and together with the stator optimization technique. As a result, the reduction of some torque ripple harmonics was attained.
Resumo:
The design process of direct-driven permanent magnet synchronous machines (PMSMs) for a full electric 4 ´ 4 sports car is presented. The rotor structure of the machine consists of two permanent magnet layers embedded inside the rotor laminations thus resulting in some inverse saliency, where the q-axis inductance is larger than the d-axis one. An integer slot stator winding was selected to fully take advantage of the additional reluctance torque. The performance characteristics of the designed PMSMs were calculated by applying a twodimensional finite element method. Cross-saturation between the d- and q-axes was taken into account in the calculation of the synchronous inductances. The calculation results are validated by measurements.
Resumo:
A direct-driven permanent magnet synchronous machine for a small urban use electric vehicle is presented. The measured performance of the machine at the test bench as well as the performance over the modified New European Drive Cycle will be given. The effect of optimal current components, maximizing the efficiency and taking into account the iron loss, is compared with the simple id=0 – control. The machine currents and losses during the drive cycle are calculated and compared with each other.
Resumo:
Hissiteollisuudessa nostokoneistoina käytettyjen sähkömoottoreiden laatuvaatimukset ovat tiuken-tuneet viime vuosina. Erityisesti koneistojen tuottama ääni ja mekaaninen värähtely ovat olleet jat-kuvasti tiukentuneen tarkastelun alaisena. Hissikoriin ja hissiä ympäröiviin rakenteisiin välittyvästä värähtelystä johtuva ääni on yksi hissin laatuvaikutelmaan merkittävimmin vaikuttavia tekijöitä. Nostokoneisto on yksi tärkeimmistä äänen ja värähtelyn lähteistä hissijärjestelmässä. Koneiston suunnittelulla edellä mainittuja tekijöitä voidaan minimoida. Sähkökoneiden suunnittelussa finiit-tielementtimenetelmien (FEM) käyttö on vakiintunut haastavimmissa sovelluksissa. Kone Oyj:llä nostokoneistoina käytetään aksiaalivuokestomagneettitahtikoneita (AFPMSM), joiden FEM simu-lointiin käytetään yleisesti kolmea eri tapaa. Kukin näistä vaihtoehdoista pitää sisällään omat hyö-tynsä, että haittansa. Suunnittelun kannalta tärkeää on oikean menetelmän valinta ai-ka/informatiivisuus suhteen maksimoimiseksi. Erittäin tärkeää on myös saatujen tulosten oikeelli-suus. Tämän diplomityön tavoite on kehittää järjestelmä, jonka avulla AFPMS-koneen voimia voidaan mitata yksityiskohtaisella tasolla. Järjestelmän avulla voidaan tarkastella käytössä olevien FE-menetelmien tulosten oikeellisuutta sekä äänen että värähtelyn syntymekanismeja. Järjestelmän tarkoitus on myös syventää Kone Oyj tietotaitoa AFPMS-koneiden toiminnasta. Tässä työssä esitellään AFPMS-koneen epäideaalisuuksia, jotka voivat vaikuttaa mittajärjestelmän suunnitteluun. Myös koneen epäideaalisuuksiin lukeutuvaa ääntä on tarkasteltu tässä työssä. Jotta työn tavoitteiden mukaista FE-menetelmien vertailua ja tulosten oikeellisuuden tarkastelua voitai-siin tehdä, myös yleisimpiä AFPMS-koneen FE-menetelmiä tarkastellaan. Työn tuloksena on mittajärjestelmän suunnitelma, jonka avulla voidaan toteuttaa kuuden vapausas-teen voimamittaus jokaiselle koneistomagneetille alle 1N resoluutiolla. Suunnitellun järjestelmän toimivuutta on tarkasteltu FE-menetelmiä käyttäen ja järjestelmässä käytettävän voima-anturin ky-vykkyyttä on todennettu referenssimittauksin. Suunniteltu mittajärjestelmä mahdollistaa sähkömoottorin useiden eri epäideaalisuuksien tarkaste-lun yksityiskohtaisella tasolla. Mittausajatuksen soveltaminen myös muiden koneiden tutkimiseen tarjoaa mahdollisuuksia jatkotutkimuksille.
Resumo:
Electrical machine drives are the most electrical energy-consuming systems worldwide. The largest proportion of drives is found in industrial applications. There are, however many other applications that are also based on the use of electrical machines, because they have a relatively high efficiency, a low noise level, and do not produce local pollution. Electrical machines can be classified into several categories. One of the most commonly used electrical machine types (especially in the industry) is induction motors, also known as asynchronous machines. They have a mature production process and a robust rotor construction. However, in the world pursuing higher energy efficiency with reasonable investments not every application receives the advantage of using this type of motor drives. The main drawback of induction motors is the fact that they need slipcaused and thus loss-generating current in the rotor, and additional stator current for magnetic field production along with the torque-producing current. This can reduce the electric motor drive efficiency, especially in low-speed, low-power applications. Often, when high torque density is required together with low losses, it is desirable to apply permanent magnet technology, because in this case there is no need to use current to produce the basic excitation of the machine. This promotes the effectiveness of copper use in the stator, and further, there is no rotor current in these machines. Again, if permanent magnets with a high remanent flux density are used, the air gap flux density can be higher than in conventional induction motors. These advantages have raised the popularity of PMSMs in some challenging applications, such as hybrid electric vehicles (HEV), wind turbines, and home appliances. Usually, a correctly designed PMSM has a higher efficiency and consequently lower losses than its induction machine counterparts. Therefore, the use of these electrical machines reduces the energy consumption of the whole system to some extent, which can provide good motivation to apply permanent magnet technology to electrical machines. However, the cost of high performance rare earth permanent magnets in these machines may not be affordable in many industrial applications, because the tight competition between the manufacturers dictates the rules of low-cost and highly robust solutions, where asynchronous machines seem to be more feasible at the moment. Two main electromagnetic components of an electrical machine are the stator and the rotor. In the case of a conventional radial flux PMSM, the stator contains magnetic circuit lamination and stator winding, and the rotor consists of rotor steel (laminated or solid) and permanent magnets. The lamination itself does not significantly influence the total cost of the machine, even though it can considerably increase the construction complexity, as it requires a special assembly arrangement. However, thin metal sheet processing methods are very effective and economically feasible. Therefore, the cost of the machine is mainly affected by the stator winding and the permanent magnets. The work proposed in this doctoral dissertation comprises a description and analysis of two approaches of PMSM cost reduction: one on the rotor side and the other on the stator side. The first approach on the rotor side includes the use of low-cost and abundant ferrite magnets together with a tooth-coil winding topology and an outer rotor construction. The second approach on the stator side exploits the use of a modular stator structure instead of a monolithic one. PMSMs with the proposed structures were thoroughly analysed by finite element method based tools (FEM). It was found out that by implementing the described principles, some favourable characteristics of the machine (mainly concerning the machine size) will inevitable be compromised. However, the main target of the proposed approaches is not to compete with conventional rare earth PMSMs, but to reduce the price at which they can be implemented in industrial applications, keeping their dimensions at the same level or lower than those of a typical electrical machine used in the industry at the moment. The measurement results of the prototypes show that the main performance characteristics of these machines are at an acceptable level. It is shown that with certain specific actions it is possible to achieve a desirable efficiency level of the machine with the proposed cost reduction methods.
Resumo:
In this thesis the effect of focal point parameters in fiber laser welding of structural steel is studied. The goal is to establish relations between laser power, focal point diameter and focal point position with the resulting quality, weld-bead geometry and hardness of the welds. In the laboratory experiments, AB AH36 shipbuilding steel was welded in an I-butt joint configuration using IPG YLS-10000 continuous wave fiber laser. The quality of the welds produced were evaluated based on standard SFS-EN ISO 13919-1. The weld-bead geometry was defined from the weld cross-sections and Vickers hardness test was used to measure hardness's from the middle of the cross-sections. It was shown that all the studied focal point parameters have an effect on the quality, weld-bead geometry and hardness of the welds produced.
Resumo:
This paper introduces an important source of torque ripple in PMSMs with tooth-coil windings (TC-PMSMs). It is theoretically proven that saturation and cross-saturation phenomena caused by the non-synchronous harmonics of the stator current linkage cause a synchronous inductance variation with a particular periodicity. This, in turn, determines the magnitude of the torque ripple and can also deteriorate the performance of signal-injection-based rotor position estimation algorithms. An improved dq- inductance model is proposed. It can be used in torque ripple reduction control schemes and can enhance the self-sensing capabilities of TC-PMSMs
Resumo:
Wind is one of the most compelling forms of indirect solar energy. Available now, the conversion of wind power into electricity is and will continue to be an important element of energy self-sufficiency planning. This paper is one in a series intended to report on the development of a new type of generator for wind energy; a compact, high-power, direct-drive permanent magnet synchronous generator (DD-PMSG) that uses direct liquid cooling (LC) of the stator windings to manage Joule heating losses. The main param-eters of the subject LC DD-PMSG are 8 MW, 3.3 kV, and 11 Hz. The stator winding is cooled directly by deionized water, which flows through the continuous hollow conductor of each stator tooth-coil winding. The design of the machine is to a large degree subordinate to the use of these solid-copper tooth-coils. Both steady-state and timedependent temperature distributions for LC DD-PMSG were examined with calculations based on a lumpedparameter thermal model, which makes it possible to account for uneven heat loss distribution in the stator conductors and the conductor cooling system. Transient calculations reveal the copper winding temperature distribution for an example duty cycle during variable-speed wind turbine operation. The cooling performance of the liquid cooled tooth-coil design was predicted via finite element analysis. An instrumented cooling loop featuring a pair of LC tooth-coils embedded in a lamination stack was built and laboratory tested to verify the analytical model. Predicted and measured results were in agreement, confirming the predicted satisfactory operation of the LC DD-PMSG cooling technology approach as a whole.
Resumo:
Point-of-care (POC) –diagnostics is a field with rapidly growing market share. As these applications become more widely used, there is an increasing pressure to improve their performance to match the one of a central laboratory tests. Lanthanide luminescence has been widely utilized in diagnostics because of the numerous advantages gained by the utilization of time-resolved or anti-Stokes detection. So far the use of lanthanide labels in POC has been scarce due to limitations set by the instrumentation required for their detection and the shortcomings, e.g. low brightness, of these labels. Along with the advances in the research of lanthanide luminescence, and in the field of semiconductors, these materials are becoming a feasible alternative for the signal generation also in the future POC assays. The aim of this thesis was to explore ways of utilizing time-resolved detection or anti-Stokes detection in POC applications. The long-lived fluorescence for the time-resolved measurement can be produced with lanthanide chelates. The ultraviolet (UV) excitation required by these chelates is cumbersome to produce with POC compatible fluorescence readers. In this thesis the use of a novel light-harvesting ligand was studied. This molecule can be used to excite Eu(III)-ions at wavelengths extending up to visible part of the spectrum. An enhancement solution based on this ligand showed a good performance in a proof-of-concept -bioaffinity assay and produced a bright signal upon 365 nm excitation thanks to the high molar absorptivity of the chelate. These features are crucial when developing miniaturized readers for the time-resolved detection of fluorescence. Upconverting phosphors (UCPs) were studied as an internal light source in glucose-sensing dry chemistry test strips and ways of utilizing their various emission wavelengths and near-infrared excitation were explored. The use of nanosized NaYF :Yb3+,Tm3+-particles enabled the replacement of an external UV-light source with a NIR-laser and gave an additional degree of freedom in the optical setup of the detector instrument. The new method enabled a blood glucose measurement with results comparable to a current standard method of measuring reflectance. Microsized visible emitting UCPs were used in a similar manner, but with a broad absorbing indicator compound filtering the excitation and emission wavelengths of the UCP. This approach resulted in a novel way of benefitting from the non-linear relationship between the excitation power and emission intensity of the UCPs, and enabled the amplification of the signal response from the indicator dye.