64 resultados para organic classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and optical properties of thin films based on C60 materials are studied. Reproducible vacuum method of thin fullerene films production with Cd impurity on Si, glass and mica surfaces is developed. Surface morphology of the films are investigated by AFM and SEM methods. The ab initio quantum - chemical calculations of the geometry, total energy and excited energy states of complex fullerene- cadmium telluride supramolecules are performed. Photoluminescence spectra of composite thin films based on C60 before and after X-ray irradiation were measured. The intensity of additional peaks is defined as the charge composition due to the type of substrate. These results are interpreted as an appearance of the dipole-allowed transitions in the fullerene excited singlet states spectrum cause of an interference with cadmium telluride. X-ray irradiated films were investigated, and additional peaks in photoluminescence spectra were detected. These peaks appear as a result of molecular complexes formation from C60CdTe mixture and dimerization of the films. Density functional B3LYP quantum-chemical calculations for C60CdTe, molecular complexes, (C60)2 and C120O dimers were performed to elucidate some experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the times preceding the Second World War the subject of aircraft tracking has been a core interest to both military and non-military aviation. During subsequent years both technology and configuration of the radars allowed the users to deploy it in numerous fields, such as over-the-horizon radar, ballistic missile early warning systems or forward scatter fences. The latter one was arranged in a bistatic configuration. The bistatic radar has continuously re-emerged over the last eighty years for its intriguing capabilities and challenging configuration and formulation. The bistatic radar arrangement is used as the basis of all the analyzes presented in this work. The aircraft tracking method of VHF Doppler-only information, developed in the first part of this study, is solely based on Doppler frequency readings in relation to time instances of their appearance. The corresponding inverse problem is solved by utilising a multistatic radar scenario with two receivers and one transmitter and using their frequency readings as a base for aircraft trajectory estimation. The quality of the resulting trajectory is then compared with ground-truth information based on ADS-B data. The second part of the study deals with the developement of a method for instantaneous Doppler curve extraction from within a VHF time-frequency representation of the transmitted signal, with a three receivers and one transmitter configuration, based on a priori knowledge of the probability density function of the first order derivative of the Doppler shift, and on a system of blocks for identifying, classifying and predicting the Doppler signal. The extraction capabilities of this set-up are tested with a recorded TV signal and simulated synthetic spectrograms. Further analyzes are devoted to more comprehensive testing of the capabilities of the extraction method. Besides testing the method, the classification of aircraft is performed on the extracted Bistatic Radar Cross Section profiles and the correlation between them for different types of aircraft. In order to properly estimate the profiles, the ADS-B aircraft location information is adjusted based on extracted Doppler frequency and then used for Bistatic Radar Cross Section estimation. The classification is based on seven types of aircraft grouped by their size into three classes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this master's thesis is to develop a two-dimensional drift-di usion model, which describes charge transport in organic solar cells. The main bene t of a two-dimensional model compared to a one-dimensional one is the inclusion of the nanoscale morphology of the active layer of a bulk heterojunction solar cell. The developed model was used to study recombination dynamics at the donor-acceptor interface. In some cases, it was possible to determine e ective parameters, which reproduce the results of the two-dimensional model in the one-dimensional case. A summary of the theory of charge transport in semiconductors was presented and discussed in the context of organic materials. Additionally, the normalization and discretization procedures required to nd a numerical solution to the charge transport problem were outlined. The charge transport problem was solved by implementing an iterative scheme called successive over-relaxation. The obtained solution is given as position-dependent electric potential, free charge carrier concentrations and current densities in the active layer. An interfacial layer, separating the pure phases, was introduced in order to describe charge dynamics occurring at the interface between the donor and acceptor. For simplicity, an e ective generation of free charge carriers in the interfacial layer was implemented. The pure phases simply act as transport layers for the photogenerated charges. Langevin recombination was assumed in the two-dimensional model and an analysis of the apparent recombination rate in the one-dimensional case is presented. The recombination rate in a two-dimensional model is seen to e ectively look like reduced Langevin recombination at open circuit. Replicating the J-U curves obtained in the two-dimensional model is, however, not possible by introducing a constant reduction factor in the Langevin recombination rate. The impact of an acceptor domain in the pure donor phase was investigated. Two cases were considered, one where the acceptor domain is isolated and another where it is connected to the bulk of the acceptor. A comparison to the case where no isolated domains exist was done in order to quantify the observed reduction in the photocurrent. The results show that all charges generated at the isolated domain are lost to recombination, but the domain does not have a major impact on charge transport. Trap-assisted recombination at interfacial trap states was investigated, as well as the surface dipole caused by the trapped charges. A theoretical expression for the ideality factor n_id as a function of generation was derived and shown to agree with simulation data. When the theoretical expression was fitted to simulation data, no interface dipole was observed.