75 resultados para metal adsorption
Resumo:
Bio-ethanol has been used as a fuel additive in modern society aimed at reducing CO2-emissions and dependence on oil. However, ethanol is unsuitable as fuel supplement in higher proportions due to its physico-chemical properties. One option to counteract the negative effects is to upgrade ethanol in a continuous fixed bed reactor to more valuable C4 products such as 1-butanol providing chemical similarity with traditional gasoline components. Bio-ethanol based valorization products also have other end-uses than just fuel additives. E.g. 1-butanol and ethyl acetate are well characterised industrial solvents and platform chemicals providing greener alternatives. The modern approach is to apply heterogeneous catalysts in the investigated reactions. The research was concentrated on aluminium oxide (Al2O3) and zeolites that were used as catalysts and catalyst supports. The metals supported (Cu, Ni, Co) gave very different product profiles and, thus, a profound view of different catalyst preparation methods and characterisation techniques was necessary. Additionally, acidity and basicity of the catalyst surface have an important role in determining the product profile. It was observed that ordinary determination of acid strength was not enough to explain all the phenomena e.g. the reaction mechanism. One of the main findings of the thesis is based on the catalytically active site which originates from crystallite structure. As a consequence, the overall evaluation of different by-products and intermediates was carried out by combining the information. Further kinetic analysis was carried out on metal (Cu, Ni, Co) supported self-prepared alumina catalysts. The thesis gives information for further catalyst developments aimed to scale-up towards industrially feasible operations.
Resumo:
This study will concentrate on Product Data Management (PDM) systems, and sheet metal design features and classification. In this thesis, PDM is seen as an individual system which handles all product-related data and information. The meaning of relevant data is to take the manufacturing process further with fewer errors. The features of sheet metals are giving more information and value to the designed models. The possibility of implementing PDM and sheet metal features recognition are the core of this study. Their integration should make the design process faster and manufacturing-friendly products easier to design. The triangulation method is the basis for this research. The sections of this triangle are: scientific literature review, interview using the Delphi method and the author’s experience and observations. The main key findings of this study are: (1) the area of focus in triangle (the triangle of three different point of views: business, information exchange and technical) depends on the person’s background and their role in the company, (2) the classification in the PDM system (and also in the CAD system) should be done using the materials, tools and machines that are in use in the company and (3) the design process has to be more effective because of the increase of industrial production, sheet metal blank production and the designer’s time spent on actual design and (4) because Design For Manufacture (DFM) integration can be done with CAD-programs, DFM integration with the PDM system should also be possible.
Resumo:
Ribonucleic acid (RNA) has many biological roles in cells: it takes part in coding, decoding, regulating and expressing of the genes as well as has the capacity to work as a catalyst in numerous biological reactions. These qualities make RNA an interesting object of various studies. Development of useful tools with which to investigate RNA is a prerequisite for more advanced research in the field. One of such tools may be the artificial ribonucleases, which are oligonucleotide conjugates that sequence-selectively cleave complementary RNA targets. This thesis is aimed at developing new efficient metal-ion-based artificial ribonucleases. On one hand, to solve the challenges related to solid-supported synthesis of metal-ion-binding conjugates of oligonucleotides, and on the other hand, to quantify their ability to cleave various oligoribonucleotide targets in a pre-designed sequence selective manner. In this study several artificial ribonucleases based on cleaving capability of metal ion chelated azacrown moiety were designed and synthesized successfully. The most efficient ribonucleases were the ones with two azacrowns close to the 3´- end of the oligonucleotide strand. Different transition metal ions were introduced into the azacrown moiety and among them, the Zn2+ ion was found to be better than Cu2+ and Ni2+ ions.
Resumo:
In recent decades, industrial activity growth and increasing water usage worldwide have led to the release of various pollutants, such as toxic heavy metals and nutrients, into the aquatic environment. Modified nanocellulose and microcellulose-based adsorption materials have the potential to remove these contaminants from aqueous solutions. The present research consisted of the preparation of five different nano/microcellulose-based adsorbents, their characterization, the study of adsorption kinetics and isotherms, the determination of adsorption mechanisms, and an evaluation of adsorbents’ regeneration properties. The same well known reactions and modification methods that were used for modifying conventional cellulose also worked for microfibrillated cellulose (MFC). The use of succinic anhydride modified mercerized nanocellulose, and aminosilane and hydroxyapatite modified nanostructured MFC for the removal of heavy metals from aqueous solutions exhibited promising results. Aminosilane, epoxy and hydroxyapatite modified MFC could be used as a promising alternative for H2S removal from aqueous solutions. In addition, new knowledge about the adsorption properties of carbonated hydroxyapatite modified MFC as multifunctional adsorbent for the removal of both cations and anions ions from water was obtained. The maghemite nanoparticles (Fe3O4) modified MFC was found to be a highly promising adsorbent for the removal of As(V) from aqueous solutions due to its magnetic properties, high surface area, and high adsorption capacity . The maximum removal efficiencies of each adsorbent were studied in batch mode. The results of adsorption kinetics indicated very fast removal rates for all the studied pollutants. Modeling of adsorption isotherms and adsorption kinetics using various theoretical models provided information about the adsorbent’s surface properties and the adsorption mechanisms. This knowledge is important for instance, in designing water treatment units/plants. Furthermore, the correspondence between the theory behind the model and properties of the adsorbent as well as adsorption mechanisms were also discussed. On the whole, both the experimental results and theoretical considerations supported the potential applicability of the studied nano/microcellulose-based adsorbents in water treatment applications.
Resumo:
Erip.: Ymer 1891.
Resumo:
Additive manufacturing is a fast growing manufacturing technology capable of producing complex objects without the need for conventional manufacturing process planning. During the process the work piece is built by adding material one layer at a time according to a digital 3D CAD model. At first additive manufacturing was mainly used to make prototypes but the development of the technology has made it possible to also make final products. Welding is the most common joining method for metallic materials. As the maximum part size of additive manufacturing is often limited, it may sometimes be required to join two or more additively manufactured parts together. However there has been almost no research on the welding of additively manufactured parts so far, which means that there has been very little information available on the possible differences compared to the welding of sheet metal parts. The aim of this study was to compare the weld joint properties of additively manufactured parts to those of sheet metal parts. The welding process that was used was TIG welding and the test material was 316L austenitic stainless steel. Weld joint properties were studied by making tensile, bend and hardness tests and by studying the weld microstructures with a microscope. Results show that there are certain characteristics in the welds of additively manufactured parts. The building direction of the test pieces has some impact on the mechanical properties of the weld. Nevertheless all the welds exhibited higher yield strength than the sheet metal welds but at the same time elongation at break was lower. It was concluded that TIG welding is a feasible process for welding additively manufactured parts.
Resumo:
This thesis studies the advantages, disadvantages and possibilities of additive manufacturing in making components with internal flow channels. These include hydraulic components, components with cooling channels and heat exchangers. Processes studied in this work are selective laser sintering and selective laser melting of metallic materials. The basic principles of processes and parameters involved in the process are presented and different possibilities of internal channel manufacturing and flow improvement are introduced
Resumo:
Arsenic is a toxic substance. The amount of arsenic in waste water is a raising problem because of increasing mining industry. Arsenic is connected to cancers in areas where arsenic concentration in drinking water is higher than recommendations. The main object in this master’s thesis was to research how ferrous hydroxide waste material is adsorbed arsenic from ammonia containing waste water. In this master’s thesis there is two parts: theoretical and experimental part. In theoretical part harmful effects of arsenic, theory of adsorption, isotherms modeling of adsorption and analysis methods of arsenic are described. In experimental part adsorption capacity of ferrous hydroxide waste material and adsorption time with different concentrations of arsenic were studied. Waste material was modified with two modification methods. Based on experimental results the adsorption capacity of waste material was high. The problem with waste material was that at same time with arsenic adsorption sulfur was dissolving in solution. Waste material was purified from sulfur but purification methods were not efficient enough. Purification methods require more research.
Resumo:
The objectives of this work were synthesizing an EDTA-β-CD adsorbent and investigating its adsorption potential and applications in preconcentration of REEs from aqueous phase. The adsorption capacity of EDTA-β-CD was investigated. The adsorption studies were performed by batch techniques both in one- and multi-component systems. The effects of pH, contact time and initial concentration were evaluated. The analytical detection methods and characterization methods were presented. EDTA-β-CD adsorbent was synthesized successfully with high EDTA coverage. The maximum REEs uptake was 0.310 mmol g-1 for La(III), 0.337 mmol g-1 for Ce(III) and 0.353 mmol g-1 for Eu(III), respectively. The kinetics of REEs onto EDTA-β-CD fitted well to pseudo-second-order model and the adsorption rate was affected by intra-particle diffusion. The experimental data of one component studies fitted to Langmuir isotherm model indicating the homogeneous surface of the adsorbent. The extended Sips model was applicable for the isotherm studies in three-component system. The electrostatic interaction, chelation and complexation were all involved in the adsorption mechanism. The preconcentration of RE ions and regeneration of EDTA-β-CD were successful. Overall, EDTA-β-CD is an effective adsorbent in adsorption and preconcentration of REEs.
Resumo:
In this work emission, optical, electrical and magnetic properties of the d- and f- elements doped zinc selenide crystals were investigated within a wide temperature range. Doping was performed in various technological processes: during the growth by chemical vapor transport method; by thermal diffusion from the Bi or Zn melt. Concentration of the doping impurity in the crystals was controlled by amount of the dopant in the source material or by its concentration in the doping media. Special interest in the work was paid to the influence of the different concentrations of Cr and Yb impurities on ZnSe crystals’ properties, correlations between observed effects and similarities with the Ni, Mn and Gd dopants are analysed. Possibility of formation of the excitons bound to the doping d-ions was shown. In contrast to this, it was observed that f-elements do not bound excitons, but prevent formation of excitons bound to some uncontrolled impurities. A mechanism of Cr doping impurity interaction with background impurities and zinc selenide structural defects was proposed based on experimental data. An assumption about resonant energy transfer between double charged chromium ions and complexes based on crystals’ vacancy defects was made. A correlation between emission and magnetic properties of the d- ions doped samples was established. Based on this correlation a mechanism explaining the concentration quench of the emission was proposed. It was found that f-ions bind electrically active shallow and deep donor and acceptor states of background impurity to electrically neutral complexes. This may be observed as “purification” of ZnSe crystals by doping with the rare-earth elements, resulting i tendency of the properties of f-ion doped crystals to the properties of intrinsic crystals, but with smaller concentration of uncontrolled native and impurity defects. A possible interpretation of this effect was proposed. It was shown that selenium substituting impurities decrease efficiency of the Yb doping. Based on this experimental results an attempt to determine ytterbium ion surroundings in the crystal lattice was made. It was shown that co-doping of zinc selenide crystals with the d- and f- ions leads to the combination of the impurities influence on the material’s properties. On the basis of obtained data an interaction mechanism of the d- and f-elements co-dopants was proposed. Guided by the model of the ytterbium ion incorporation in the selenide sublattice of the ZnSe crystals, an assumption about stabilization of single charged chromium ions in the zinc sublattice crystal nodes, by means of formation of the local charge compensating clusters, was made.
Resumo:
Weldability of powder bed fusion (PBF) fabricated components has come to discussion in past two years due to resent developments in the PBF technology and limited size of the machines used in the fabrication process. This study concentrated on effects of energy input of welding on mechanical properties and microstructural features of welds between PBF fabricated stainless steel 316L sheets and cold rolled sheet metal of same composition by the means of destructive testing and microscopic analysis. Optical fiber diameter, laser power and welding speed were varied during the experiments that were executed following one variable at a time (OVAT) method. One of the problems of welded PBF fabricated components has been lower elongations at break comparing to conventionally manufactured components. Decreasing energy input of the laser keyhole welding decreased elongations at break of the welded specimens. Ultimate tensile strengths were not affected significantly by the energy input of the welding, but fracturing of the specimens welded using high energy input occurred from the weld metal. Fracturing of the lower energy input welds occurred from the PBF fabricated base metal. Energy input was found to be critical factor for mechanical properties of the welds. Multioriented grain growth and formation of neck at fusion zone boundary on the cold rolled side of the weld was detected and suspected to be result from weld pool flows caused by differences in molten weld pool behaviour between the PBF fabricated and cold rolled sides of the welds.
Resumo:
Small non-coding RNAs have numerous biological functions in cell and are divided into different classes such as: microRNA, snoRNA, snRNA and siRNA. MicroRNA (miRNA) is the most studied non-coding RNA to date and is found in plants, animals and some viruses. miRNA with short sequences is involved in suppressing translation of target genes by binding to their mRNA post-transcriptionally and silencing it. Their function besides silencing of the viral gene, can be oncogenic and therefore the cause of cancer. Hence, their roles are highlighted in human diseases, which increases the interest in using them as biomarkers and drug targets. One of the major problems to overcome is recognition of miRNA. Owing to a stable hairpin structure, chain invasion by conventional Watson-Crick base-pairing is difficult. One way to enhance the hybridization is exploitation of metal-ion mediated base-pairing, i. e. oligonucleotide probes that tightly bind a metal ions and are able to form a coordinative bonds between modified and natural nucleobases. This kind of metallo basepairs containing short modified oligonucleotides can also be useful for recognition of other RNA sequences containing hairpin-like structural motives, such as the TAR sequence of HIV. In addition, metal-ion-binding oligonucleotides will undoubtedly find applications in DNA-based nanotechnology. In this study, the 3,5-dimethylpyrazol-1-yl substituted purine derivatives were successfully incorporated within oligonucleotides, into either a terminal or non-terminal position. Among all of the modified oligonucleotides studied, a 2-(3,5-dimethylpyrazol-1-yl)-6-oxopurine base containing oligonucleotide was observed to bind most efficiently to their unmodified complementary sequences in the presence of both Cu2+ or Zn2+. The oligonucleotide incorporating 2,6-bis(3,5-dimethylpyrazol-1-yl)purine base also markedly increased the stability of duplexes in the presence of Cu2+ without losing the selectivity.
Resumo:
For advanced devices in the application fields of data storage, solar cell and biosensing, one of the major challenges to achieve high efficiency is the fabrication of nanopatterned metal oxide surfaces. Such surfaces often require both precise structure at the nanometer scale and controllable patterned structure at the macro scale. Nowadays, the dominating candidates to fabricate nanopatterned surfaces are the lithographic technique and block-copolymer masks, most of which are unfortunately costly and inefficient. An alternative bottom-up approach, which involves organic/inorganic self-assembly and dip-coating deposition, has been studied intensively in recent years and has proven to be an effective technique for the fabrication of nanoperforated metal oxide thin films. The overall objective of this work was to optimize the synthesis conditions of nanoperforated TiO2 (NP-TiO2) thin films, especially to be compatible with mixed metal oxide systems. Another goal was to develop fabrication and processing of NP-TiO2 thin films towards largescale production and seek new applications for solar cells and biosensing. Besides the traditional dip-coating and drop-casting methods, inkjet printing was used to prepare thin films of metal oxides, with the advantage of depositing the ink onto target areas, further enabling cost-effective fabrication of micro-patterned nanoperforated metal oxide thin films. The films were characterized by water contact angle determination, Atomic Force Microscopy, Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Grazing Incidence XRay Diffraction. In this study, well-ordered zinc titanate nanoperforated thin films with different Zn/Ti ratios were produced successfully with zinc precursor content up to 50 mol%, and the dominating phase was Zn2Ti3O8. NP-TiO2 structures were also obtained by a cost-efficient means, namely inkjet printing, at both ambient temperature and 60 °C. To further explore new biosensing applications of nanoperforated oxide thin films, inkjet printing was used for the fabrication of both continuous and patterned polymeric films onto NP-TiO2 and perfluorinated phosphate functionalized NP-TiO2 substrates, respectively. The NP-TiO2 films can be also functionalized with a fluoroalkylsilane, resulting in hydrophobic surfaces on both titania and silica. The surface energy contrast in the nanoperforations can be tuned by irradiating the films with UV light, which provides ideal model systems for wettability studies.
Resumo:
Metal-ion-mediated base-pairing of nucleic acids has attracted considerable attention during the past decade, since it offers means to expand the genetic code by artificial base-pairs, to create predesigned molecular architecture by metal-ion-mediated inter- or intra-strand cross-links, or to convert double stranded DNA to a nano-scale wire. Such applications largely depend on the presence of a modified nucleobase in both strands engaged in the duplex formation. Hybridization of metal-ion-binding oligonucleotide analogs with natural nucleic acid sequences has received much less attention in spite of obvious applications. While the natural oligonucleotides hybridize with high selectivity, their affinity for complementary sequences is inadequate for a number of applications. In the case of DNA, for example, more than 10 consecutive Watson-Crick base pairs are required for a stable duplex at room temperature, making targeting of sequences shorter than this challenging. For example, many types of cancer exhibit distinctive profiles of oncogenic miRNA, the diagnostics of which is, however, difficult owing to the presence of only short single stranded loop structures. Metallo-oligonucleotides, with their superior affinity towards their natural complements, would offer a way to overcome the low stability of short duplexes. In this study a number of metal-ion-binding surrogate nucleosides were prepared and their interaction with nucleoside 5´-monophosphates (NMPs) has been investigated by 1H NMR spectroscopy. To find metal ion complexes that could discriminate between natural nucleobases upon double helix formation, glycol nucleic acid (GNA) sequences carrying a PdII ion with vacant coordination sites at a predetermined position were synthesized and their affinity to complementary as well as mismatched counterparts quantified by UV-melting measurements.