70 resultados para material contexts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Full contour monolithic zirconia restorations have shown an increased popularity in the dental field over the recent years, owing to its mechanical and acceptable optical properties. However, many features of the restoration are yet to be researched and supported by clinical studies to confirm its place among the other indirect restorative materials This series of in vitro studies aimed at evaluating and comparing the optical and mechanical properties, light cure irradiance, and cement polymerization of multiple monolithic zirconia material at variable thicknesses, environments, treatments, and stabilization. Five different monolithic zirconia materials, four of which were partially stabilized and one fully stabilized were investigated. The optical properties in terms of surface gloss, translucency parameter, and contrast ratio were determined via a reflection spectrophotometer at variable thicknesses, coloring, sintering method, and after immersion in an acidic environment. Light cure irradiance and radiant exposure were quantified through the specimens at variable thicknesses and the degree of conversion of two dual-cure cements was determined via Fourier Transform Infrared spectroscopy. Bi-axial flexural strength was evaluated to compare between the partially and fully stabilized zirconia prepared using different coloring and sintering methods. Surface characterization was performed using a scanning electron microscope and a spinning disk confocal microscope. The surface gloss and translucency of the zirconia investigated were brand and thickness dependent with the translucency values decreasing as the thickness increased. Staining decreased the translucency of the zirconia and enhanced surface gloss as well as the flexural strength of the fully stabilized zirconia but had no effect on partially stabilized zirconia. Immersion in a corrosive acid increased surface gloss and decreased the translucency of some zirconia brands. Zirconia thickness was inversely related to the amount of light irradiance, radiant exposure, and degree of monomer conversion. Type of sintering furnace had no effect on the optical and mechanical properties of zirconia. Monolithic zirconia maybe classified as a semi-translucent material that is well influenced by the thickness, limiting its use in the esthetic zones. Conventional acid-base reaction, autopolymerizing and dual-cure cements are recommended for its cementation. Its desirable mechanical properties give it a high potential as a restoration for posterior teeth. However, close monitoring with controlled clinical studies must be determined before any definite clinical recommendations can be drawn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kirjallisuusarvostelu

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to calibrate the material properties including strength and strain values for different material zones of ultra-high strength steel (UHSS) welded joints under monotonic static loading. The UHSS is heat sensitive and softens by heat due to welding, the affected zone is heat affected zone (HAZ). In this regard, cylindrical specimens were cut out from welded joints of Strenx® 960 MC and Strenx® Tube 960 MH, were examined by tensile test. The hardness values of specimens’ cross section were measured. Using correlations between hardness and strength, initial material properties were obtained. The same size specimen with different zones of material same as real specimen were created and defined in finite element method (FEM) software with commercial brand Abaqus 6.14-1. The loading and boundary conditions were defined considering tensile test values. Using initial material properties made of hardness-strength correlations (true stress-strain values) as Abaqus main input, FEM is utilized to simulate the tensile test process. By comparing FEM Abaqus results with measured results of tensile test, initial material properties will be revised and reused as software input to be fully calibrated in such a way that FEM results and tensile test results deviate minimum. Two type of different S960 were used including 960 MC plates, and structural hollow section 960 MH X-joint. The joint is welded by BöhlerTM X96 filler material. In welded joints, typically the following zones appear: Weld (WEL), Heat affected zone (HAZ) coarse grained (HCG) and fine grained (HFG), annealed zone, and base material (BaM). Results showed that: The HAZ zone is softened due to heat input while welding. For all the specimens, the softened zone’s strength is decreased and makes it a weakest zone where fracture happens while loading. Stress concentration of a notched specimen can represent the properties of notched zone. The load-displacement diagram from FEM modeling matches with the experiments by the calibrated material properties by compromising two correlations of hardness and strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While traditional entrepreneurship literature addresses the pursuit of entrepreneurial opportunities to a solo entrepreneur, scholars increasingly agree that new ventures are often founded and operated by entrepreneurial teams as collective efforts especially in hightechnology industries. Researchers also suggest that team ventures are more likely to survive and succeed than ventures founded by the individual entrepreneur although specific challenges might relate to multiple individuals being involved in joint entrepreneurial action. In addition to new ventures, entrepreneurial teams are seen central for organizing work in established organizations since the teams are able to create major product and service innovations that drive organizational success. Acknowledgement of the entrepreneurial teams in various organizational contexts has challenged the notion on the individual entrepreneur. However, considering that entrepreneurial teams represent a collective-level phenomenon that bases on interactions between organizational members, entrepreneurial teams may not have been studied as indepth as could be expected from the point of view of the team-level, rather than the individual or the individuals in the team. Many entrepreneurial team studies adopt the individualized view of entrepreneurship and examine the team members’ aggregate characteristics or the role of a lead entrepreneur. The previous understandings might not offer a comprehensive and indepth enough understanding of collectiveness within entrepreneurial teams and team venture performance that often relates to the team-level issues in particular. In addition, as the collective-level of entrepreneurial teams has been approached in various ways in the existing literatures, the phenomenon has been difficult to understand in research and practice. Hence, there is a need to understand entrepreneurial teams at the collective-level through a systematic and comprehensive perspective. This study takes part in the discussions on entrepreneurial teams. The overall objective of this study is to offer a description and understanding of collectiveness within entrepreneurial teams beyond individual(s). The research questions of the study are: 1) what collectiveness within entrepreneurial teams stands for, what constitutes the basic elements of it, and who are included in it, 2) why, how, and when collectiveness emerges or reinforces within entrepreneurial teams, and 3) why collectiveness within entrepreneurial teams matters and how it could be developed or supported. In order to answer the above questions, this study bases on three approaches, two set of empirical data, two analysis techniques, and conceptual study. The first data set consists of 12 qualitative semi-structured interviews with business school students who are seen as prospective entrepreneurs. The data is approached through a social constructionist perspective and analyzed through discourse analysis. The second data set bases on a qualitative multiplecase study approach that aims at theory elaboration. The main data consists of 14 individual and four group semi-structured thematic interviews with members of core entrepreneurial teams of four team startups in high-technology industries. The secondary data includes publicly available documents. This data set is approached through a critical realist perspective and analyzed through systematic thematic analysis. The study is completed through a conceptual study that aims at building a theoretical model of collective-level entrepreneurship drawing from existing literatures on organizational theory and social-psychology. The theoretical work applies a positivist perspective. This study consists of two parts. The first part includes an overview that introduces the research background, knowledge gaps and objectives, research strategy, and key concepts. It also outlines the existing knowledge of entrepreneurial team literature, presents and justifies the choices of paradigms and methods, summarizes the publications, and synthesizes the findings through answering the above mentioned research questions. The second part consists of five publications that address independent research questions but all enable to answer the research questions set for this study as a whole. The findings of this study suggest a map of relevant concepts and their relationships that help grasp collectiveness within entrepreneurial teams. The analyses conducted in the publications suggest that collectiveness within entrepreneurial teams stands for cognitive and affective structures in-between team members including elements of collective entity, collective idea of business, collective effort, collective attitudes and motivations, and collective feelings. Collectiveness within entrepreneurial teams also stands for specific joint entrepreneurial action components in which the structures are constructed. The action components reflect equality and democracy, and open and direct communication in particular. Collectiveness emerges because it is a powerful tool for overcoming individualized barriers to entrepreneurship and due to collectively oriented desire for, collective value orientation to, demand for, and encouragement to team entrepreneurship. Collectiveness emerges and reinforces in processes of joint creation and realization of entrepreneurial opportunities including joint analysis and planning of the opportunities and strategies, decision-making and realization of the opportunities, and evaluation, feedback, and sanctions of entrepreneurial action. Collectiveness matters because it is relevant for potential future entrepreneurs and because it affects the ways collective ventures are initiated and managed. Collectiveness also matters because it is a versatile, dynamic, and malleable phenomenon and the ideas of it can be applied across organizational contexts that require team work in discovering or creating and realizing new opportunities. This study further discusses how the findings add to the existing knowledge of entrepreneurial team literature and how the ideas can be applied in educational, managerial, and policy contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building Integrated Photovoltaics (BIPV) are considered as the future of photovoltaic (PV) technology. The advantage of BIPV system is its multi-functionality; they fulfil the functions of a building envelope with the added benefit of generating power by replacing the traditional roofing and façade materials with PV that generate power. In this thesis, different types of PV cells and modules have been described in detail with their efficiencies and usage trends in the last decade. The different BIPV products for roof and façade are discussed in detail giving several examples. The electricity generation potential of BIPV in selected countries is compared with their actual electricity consumption. Further, the avoided greenhouse gas (GHG) emissions associated with electricity generation from traditional sources and transportation and distribution (T&D) losses are calculated. The results illustrate huge savings in GHGs. In BIPV different types of façade and backsheets are used. In this thesis, selected backsheets and façade were characterized in terms of their surface structure identification using infrared spectroscopy (FTIR-ATR), scanning electron microscopy with energy dispersive X-ray (SEM-EDX) and physical characterization using surface energy measurements. By using FTIR-ATR, surface polymeric materials were identified and with SEM-EDX, identification of the surface elements was possible. Surface energy measurements were useful in finding the adhesives and knowing the surface energies of the various backsheets and façade. The strength of adhesion between the facade and backsheets was studied using peel test. Four different types of adhesives were used to study the fracture pattern and peel tests values to identify the most suitable adhesive. It was found out that pretreatment increased the adhesive strength significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This master’s thesis examines the effects of increased material recycling on different waste-to-energy concepts. With background study and a developed techno-economic computational method the feasibility of chosen scenarios with different combinations of mechanical treatment and waste firing technologies can be evaluated. The background study covers the waste scene of Finland, and potential market areas Poland and France. Calculated cases concentrate on municipal solid waste treatment in the Finnish operational environment. The chosen methodology to approach the objectives is techno-economic feasibility assessment. It combines calculation methods of literature and practical engineering to define the material and energy balances in chosen scenarios. The calculation results together with other operational and financial data can be concluded to net present values compared between the scenarios. For the comparison, four scenarios, most vital and alternative between each other, are established. The baseline scenario is grate firing of source separated mixed municipal solid waste. Second scenario is fluidized bed combustion of solid recovered fuel produced in mechanical treatment process with metal separation. Third scenario combines a biomaterial separation process to the solid recovered fuels preparation and in the last scenario plastics are separated in addition to the previous operations. The results indicated that the mechanical treatment scenarios still need to overcome some problems to become feasible. Problems are related to profitability, residue disposal and technical reliability. Many uncertainties are also related to the data gathered over waste characteristics, technical performance and markets. With legislative support and development of further processing technologies and markets of the recycled materials the scenarios with biomaterial and plastic separation may operate feasibly in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vapaakappalekartuntaan perustuva tilasto Suomessa julkaistuista pienpainatteista, julisteista, toimintakertomuksista ja kunnallisista julkaisuista vuodesta 1991 lähtien. Pienpainatelehdet sisältyvät tilastoon vuodesta 2014 lähtien

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vapaakappalekartuntaan perustuva tilasto Suomessa julkaistuista pienpainatteista, julisteista, toimintakertomuksista ja kunnallisista julkaisuista vuodesta 1991 lähtien. Pienpainatelehdet sisältyvät tilastoon vuodesta 2014 lähtien

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing emphasis on energy efficiency is starting to yield results in the reduction in greenhouse gas emissions; however, the effort is still far from sufficient. Therefore, new technical solutions that will enhance the efficiency of power generation systems are required to maintain the sustainable growth rate, without spoiling the environment. A reduction in greenhouse gas emissions is only possible with new low-carbon technologies, which enable high efficiencies. The role of the rotating electrical machine development is significant in the reduction of global emissions. A high proportion of the produced and consumed electrical energy is related to electrical machines. One of the technical solutions that enables high system efficiency on both the energy production and consumption sides is high-speed electrical machines. This type of electrical machines has a high system overall efficiency, a small footprint, and a high power density compared with conventional machines. Therefore, high-speed electrical machines are favoured by the manufacturers producing, for example, microturbines, compressors, gas compression applications, and air blowers. High-speed machine technology is challenging from the design point of view, and a lot of research is in progress both in academia and industry regarding the solution development. The solid technical basis is of importance in order to make an impact in the industry considering the climate change. This work describes the multidisciplinary design principles and material development in high-speed electrical machines. First, high-speed permanent magnet synchronous machines with six slots, two poles, and tooth-coil windings are discussed in this doctoral dissertation. These machines have unique features, which help in solving rotordynamic problems and reducing the manufacturing costs. Second, the materials for the high-speed machines are discussed in this work. The materials are among the key limiting factors in electrical machines, and to overcome this limit, an in-depth analysis of the material properties and behavior is required. Moreover, high-speed machines are sometimes operating in a harsh environment because they need to be as close as possible to the rotating tool and fully exploit their advantages. This sets extra requirements for the materials applied.