88 resultados para Submerged-arc-welding
Resumo:
The objective of the master’s thesis is to define the warranty practices and costs in the welding machines manufacturing company and do a proposal for a warranty policy based on the practices and costs. The study include a disquisition of the warranty practices in the subsidiaries and distributor sales. The disquisition of the warranty practices introduces the information relates to warranty period, warranty costs, including repair, spare part and other costs, the practices with the replaced parts, the utilization rate of the eWarranty system and information relates to special arrangements in the warranties. The warranty costs are defined besides the group level also separately per regions and product families. From some product families the disquisition is done per products. In this study is also done a proposal for a warranty policy for the company. The proposal speaks out the length of warranty period, the compensation of the warranty costs, the practices with replaced parts and usage of eWarranty system.
Resumo:
Leimuhitsauksen laadunhallinnassa tärkeää on prosessimainen toiminta ja toimintojen kokonaisvaltaisuuden hahmottaminen. Leimuhitsauksen ollessa osana päättymätöntä valssausta hitsauksen laadunhallinta voidaan jakaa kolmeen päävaiheeseen: ennen hitsausta, hitsauksen aikana ja hitsauksen jälkeen vaikuttaviin laaduntuottotekijöihin. Leimuhitsauksen laaduntuottotekijöiden määritys ja jaottelu kaavioiksi on toteutettu tässä työssä. Leimuhitsin tekniseen laatuun vaikuttavat monet ilmiöt ja parametrit hitsauksen aikana. Tärkeimpiä hitsausparametreista ovat hitsausjännite, alustan liikenopeus, tyssäysmatka sekä leimutusaika. Väärät hitsausolosuhteet tai hitsausparametrit aiheuttavat erilaisia mekaanisia ja metallurgisia vikoja leimuhitsiin. Eräs metallurginen vikatyyppi ovat oksidisulkeumat hitsialueella. Nämä hapettuneet alueet voivat johtaa juurensa erilaisista syistä ja esimerkiksi leimutusajan ja epätasaisen liitospinnan yhteyttä sulkeumien syntyyn on epäilty. Pidennetyillä leimutusajoilla tehtyjen hitsauskokeiden ja hitsien rikkovien aineenkoetuskokeiden tuloksena todettiin tässä tutkittujen koehitsien oksidisulkeumien syntyvän hapettumalla leimutuksen aikana tai juuri hetkellä ennen tyssäystä, minkä lisäksi kosteat olosuhteet hitsausatmosfäärin ympärillä heikentävät lopputuloksen laatua. Leimutusajalla on tärkein osa leimutettavia pintoja tasaavana tekijänä ja mitä epätasaisempi liitettävä pinta on, sitä pidemmän leimutusajan se tarvitsee.
Resumo:
Digitoitu 10. 6. 2008.
Resumo:
Digitoitu 11. 7. 2008.
Resumo:
The productivity, quality and cost efficiency of welding work are critical for metal industry today. Welding processes must get more effective and this can be done by mechanization and automation. Those systems are always expensive and they have to pay the investment back. In this case it is really important to optimize the needed intelligence and this way needed automation level, so that a company will get the best profit. This intelligence and automation level was earlier classified in several different ways which are not useful for optimizing the process of automation or mechanization of welding. In this study the intelligence of a welding system is defined in a new way to enable the welding system to produce a weld good enough. In this study a new way is developed to classify and select the internal intelligence level of a welding system needed to produce the weld efficiently. This classification contains the possible need of human work and its effect to the weld and its quality but does not exclude any different welding processes or methods. In this study a totally new way is developed to calculate the best optimization for the needed intelligence level in welding. The target of this optimization is the best possible productivity and quality and still an economically optimized solution for several different cases. This new optimizing method is based on grounds of product type, economical productivity, the batch size of products, quality and criteria of usage. Intelligence classification and optimization were never earlier made by grounds of a made product. Now it is possible to find the best type of welding system needed to welddifferent types of products. This calculation process is a universal way for optimizing needed automation or mechanization level when improving productivity of welding. This study helps the industry to improve productivity, quality and cost efficiency of welding workshops.
Resumo:
It is necessary to use highly specialized robots in ITER (International Thermonuclear Experimental Reactor) both in the manufacturing and maintenance of the reactor due to a demanding environment. The sectors of the ITER vacuum vessel (VV) require more stringent tolerances than normally expected for the size of the structure involved. VV consists of nine sectors that are to be welded together. The vacuum vessel has a toroidal chamber structure. The task of the designed robot is to carry the welding apparatus along a path with a stringent tolerance during the assembly operation. In addition to the initial vacuum vessel assembly, after a limited running period, sectors need to be replaced for repair. Mechanisms with closed-loop kinematic chains are used in the design of robots in this work. One version is a purely parallel manipulator and another is a hybrid manipulator where the parallel and serial structures are combined. Traditional industrial robots that generally have the links actuated in series are inherently not very rigid and have poor dynamic performance in high speed and high dynamic loading conditions. Compared with open chain manipulators, parallel manipulators have high stiffness, high accuracy and a high force/torque capacity in a reduced workspace. Parallel manipulators have a mechanical architecture where all of the links are connected to the base and to the end-effector of the robot. The purpose of this thesis is to develop special parallel robots for the assembly, machining and repairing of the VV of the ITER. The process of the assembly and machining of the vacuum vessel needs a special robot. By studying the structure of the vacuum vessel, two novel parallel robots were designed and built; they have six and ten degrees of freedom driven by hydraulic cylinders and electrical servo motors. Kinematic models for the proposed robots were defined and two prototypes built. Experiments for machine cutting and laser welding with the 6-DOF robot were carried out. It was demonstrated that the parallel robots are capable of holding all necessary machining tools and welding end-effectors in all positions accurately and stably inside the vacuum vessel sector. The kinematic models appeared to be complex especially in the case of the 10-DOF robot because of its redundant structure. Multibody dynamics simulations were carried out, ensuring sufficient stiffness during the robot motion. The entire design and testing processes of the robots appeared to be complex tasks due to the high specialization of the manufacturing technology needed in the ITER reactor, while the results demonstrate the applicability of the proposed solutions quite well. The results offer not only devices but also a methodology for the assembly and repair of ITER by means of parallel robots.
Resumo:
The oxygen cutting is a thermal cutting process, in which metal is heated locally up to its ignition temperature and burnt off by oxygen blast. Oxygen cutting can be used to remove upset metal of a hollow bar occurred due to solid-state welding process. The main goal of this research was to establish a connection between oxygen blasts and mass of metal removed and relate findings to production to suggest improvements to the current process. This master´s thesis describes the designing and building of a test rig for oxygen blowing measurements. It also contains all executed tests and test results, which were carried out. There are different cutting parameters which were studied as well as their effect on cutting process. The oxygen cutting process, used in solid-state welding process, can be improved by the test results.
Resumo:
The mechanical properties of aluminium alloys are strongly influenced by the alloying elements and their concentration. In the case of aluminium alloy EN AW-6060 the main alloying elements are magnesium and silicon. The first goal of this thesis was to determine stability, repeatability and sensitivity as figures of merit of the in-situ melt identification technique. In this study the emissions from the laser welding process were monitored with a spectrometer. With the information produced by the spectrometer, quantitative analysis was conducted to determine the figures of merit. The quantitative analysis concentrated on magnesium and aluminium emissions and their relation. The results showed that the stability of absolute intensities was low, but the normalized magnesium emissions were quite stable. The repeatability of monitoring magnesium emissions was high (about 90 %). Sensitivity of the in-situ melt identification technique was also high. As small as 0.5 % change in magnesium content was detected by the spectrometer. The second goal of this study was to determine the loss of mass during deep penetration laser welding. The amount of magnesium in the material was measured before and after laser welding to determine the loss of magnesium. This study was conducted for aluminium alloy with nominal magnesium content of 0-10 % and for standard material EN AW-6060 that was welded with filler wire AlMg5. It was found that while the magnesium concentration in the material changed, the loss of magnesium remained fairly even. Also by feeding filler wire, the behaviour was similar. Thirdly, the reason why silicon had not been detected in the emission spectrum needed to be explained. Literature research showed that the amount of energy required for silicon to excite is considerably higher compared to magnesium. The energy input in the used welding process is insufficient to excite the silicon atoms.
Resumo:
This master’s thesis gives out the real situation of the China welding industry and factories nowadays in different geographical areas, in order to inform the Finnish companies who have the willing to find a Chinese welding subcontractor a proper and correct selection concept by analyzing and supplying the information of different scale and form welding factories in different Chinese areas. The first section of this thesis gives out the general situation about the co-operation between China and Finland in the welding industry, also includes the general introduction of the Chinese welding industry. The second section gives out the geographical compartmentalization result of Chinese welding industry, which is where and how many areas will be studied in this thesis. The main body of this thesis is the real information of welding productivity, welding cost, and welding quality in China. All the information was collected from real factories in China by the author. The last section of this thesis is the improvements to the Chinese welding factories that have the willing to become a subcontractor, and the suggestions to the Finnish companies who may find a Chinese welding factory as their subcontractor in future.
Resumo:
Työssä tutkittiin Kempin WiseRoot-prosessilla hitsattujen päittäisliitosten väsymiskestävyyttä laboratoriokokein ja väsymiskestävyyden mitoitusmenetelmillä. WiseRoot-hitsausprosessi on räätälöity lyhytkaariprosessi juuripalkojen hitsaukseen yhdeltä puolelta. Väsytyskoekappaleissa käytettiin eri lujuusluokan rakenneteräksiä sekä materiaalipaksuuksia. Mantsinen Group Ltd Oy hitsasi lisäksi yhdeltä ja kahdelta puolelta hitsattuja vertailukappaleita normaalilla MAG-hitsausprosessilla. Väsymismitoitus tehdään yleisesti perustuen väsymisluokkiin, joten väsytyskokeilla ja mitoitusmenetelmillä saatuja tuloksia tarkasteltiin näiden luokitusten avulla. Tuloksia vertailtiin sekä keskenään että standardeista löytyviin väsymisluokkasuosituksiin. Väsymiskestävyyden mitoitusmenetelmistä työssä käytettiin nimelliseen jännitykseen, teholliseen lovijännitykseen ja paikalliseen venymään perustuvaa menetelmää sekä murtumismekaniikkaa. Laboratoriokokeiden perusteella voidaan todeta, että WiseRoot-hitsausprosessilla on mahdollista tuottaa yhdeltä puolelta päittäisliitos, jonka väsymiskestävyys on verrattavissa kahdelta puolelta hitsattuun päittäisliitokseen. Mitoitusmenetelmillä saadut tulokset olivat pääsääntöisesti konservatiivisia verrattuna koetuloksiin. Ainoastaan paikalliseen venymään perustuvalla menetelmällä saadut väsymisluokat olivat suurempia kuin väsytyskoetulosten perusteella lasketut väsymisluokat.
Resumo:
Rapid depletion of easy-to-access fossil fuel, predominantly, oil and gas resources has now necessitated increase in need to develop new oil and gas sources in ever more remote and hostile environments. This is necessary in order to explore more oil and gas resources to meet rapidly rising long-term energy demand in the world, both at present and in the nearest future. Arctic is one of these harsh environments, where enormous oil and gas resources are available, containing about 20% of the world total oil and gas, but the environmental conditions are very harsh and hostile. However, virtually all the facilities required for the exploration and development of this new energy source are constructed with metals as well as their alloys and are predominantly joined together by welding processes and technologies. Meanwhile, due to entirely different environment from the usual moderate temperate region, conventional welding technologies, common metals and their alloys cannot be applied as this Arctic environment demand metals structures with very high toughness and strength properties under extremely low temperature. This is due to the fact that metals transit from ductility to brittleness as the temperature moves toward extreme negative values. Hence, this research work investigates and presents the advanced welding technologies applicable to Arctic metal structures which can give satisfactory weldments under active Arctic service conditions. .
Resumo:
In ship and offshore terminal construction, welded cross sections are thick and the number of welds very high. Consequently, there are two aspects of great importance; cost and heat input. Reduction in the welding operation time decreases the costs of the work force and avoids excessive heat, preventing distortion and other weld defects. The need to increase productivity while using a single wire in the GMAW process has led to the use of a high current and voltage to improve the melting rate. Unfortunately, this also increases the heat input. Innovative GMAW processes, mostly implemented for sheet plate sections, have shown significant reduction in heat input (Q), low distortion and increase in welding speed. The aim of this study is to investigate adaptive pulsed GMAW processes and assess relevant applications in the high power range, considering possible benefits when welding thicker sections and high yield strength steel. The study experimentally tests the usability of adaptive welding processes and evaluates their effects on weld properties, penetration and shapes of the weld bead.The study first briefly reviews adaptive GMAW to evaluate different approaches and their applications and to identify benefits in adaptive pulsed. Experiments are then performed using Synergic Pulsed GMAW, WiseFusionTM and Synergic GMAW processes to weld a T-joint in a horizontal position (PB). The air gap between the parts ranges from 0 to 2.5 mm. The base materials are structural steel grade S355MC and filler material G3Si1. The experiment investigates heat input, mechanical properties and microstructure of the welded joint. Analysis of the literature reveals that different approaches have been suggested using advanced digital power sources with accurate waveform, current, voltage, and feedback control. In addition, studies have clearly indicated the efficiency of lower energy welding processes. Interest in the high power range is growing and a number of different approaches have been suggested. The welding experiments in this study reveal a significant reduction of heat input and a weld microstructure with the presence of acicular ferrite (AF) beneficial for resistance to crack propagation. The WiseFusion bead had higher dilution, due to the weld bead shape, and low defects. Adaptive pulse GMAW processes can be a favoured choice when welding structures with many welded joints. The total heat reduction mitigates residual stresses and the bead shape allows a higher amperage limit. The stability of the arc during the process is virtually spatter free and allows an increase in welding speed.
Resumo:
Tämän tutkimuksen tavoitteena oli nykyisin tuotantokäytössä olevan rullaoikaisukoneen automatisointi ja uuden oikaisukonekokonaisuuden mitoitus tulevaisuuden materiaaliominaisuuksien perusteella. Automatisoinnilla on tarkoitus nykyisessä käytössä helpottaa nauhahitsaajan työtä ja lähitulevaisuudessa optimoida romutustarvetta kelojen keula- ja häntäalueilla. Uuden oikaisukonekokonaisuuden osalta työssä on määritetty rullaoikaisukoneen rullakoot, rullien keskiöetäisyys, vaadittava moottoriteho ja rullien tuennan tarve sekä erillisen hilseenmurskaimen/rullavenytysoikaisukoneen tarve peittauslinjan toiminnassa. Rullaoikaisukoneen asetusarvojen laskeminen toteutettiin ympyräkaarimenetelmää ja seurantatutkimusta käyttäen. Ensimmäisen ylärullan asetteluarvot on laskettu suorilla kaavasovelluksilla. Toisen ylärullan kohdalla oli tarpeellista tehdä laajempaa seurantatutkimusta, jotta löydettiin sellainen tapa, jolla myös sen arvot saataisiin riippuvaiseksi ensimmäisen ylärullan asetteluarvoista ja ympyränkaarimenetelmästä. Uutta oikaisukonekokonaisuutta varten suoritettujen laskelmien perusteella rullaoikaisukoneen telakokoa ja keskiöetäisyyttä on pienennettävä, moottoritehoa on kasvatettava ja työrullien tuentaa on parannettava verrattuna nykyiseen tuotantokoneeseen. Esioikaisukonetyyppisen rullaoikaisukoneen rajoittuneesta oikaisutuloksesta ja tietyillä kelalaaduilla esiintyvä erittäin luja wüstiittihilse puoltaa vahvasti erillisen hilseenmurskaimen lisäämistä peittauslinjan konekantaan.
Resumo:
High strength steel (HSS) has been in use in workshops since the 1980s. At that time, the significance of the term HSS differed from the modern conception as the maximum yield strength of HSSs has increased nearly every year. There are three different ways to make HSS. The first and oldest method is QT (quenched and tempered) followed by the TMCP (thermomechanical controlled process) and DQ (direct quenching) methods. This thesis consists of two parts, the first of which part introduces the research topic and discusses welded HSS structures by characterizing the most important variables. In the second part of the thesis, the usability of welded HSS structures is examined through a set of laboratory tests. The results of this study explain the differences in the usability of the welded HSSs made by the three different methods. The results additionally indicate that usage of different HSSs in the welded structures presumes that manufacturers know what kind of HSS they are welding. As manufacturers use greater strength HSSs in welded structures, the demands for welding rise as well. Therefore, during the manufacturing process, factors such as heat input, cooling time, weld quality, and more must be under careful observation.