71 resultados para Restorable load estimation
Resumo:
Nowadays the energy efficiency has become one of the most concerned topics. Compressors are the equipment, which is very common in industry. Moreover, they tend to operate during long cycles and therefore even small decrease in power consumption can significantly reduce electricity costs during the year. And therefore it is important to investigate ways of increasing the energy efficiency of the compressors. In the thesis rotary screw compressor alongside with different control approaches is described. Simulation models for various control types of rotary screw compressor are developed. Analysis of laboratory equipment is conducted and results are compared with simulation. Suggestions of the real laboratory equipment improvement are given.
Resumo:
Fluid handling systems such as pump and fan systems are found to have a significant potential for energy efficiency improvements. To deliver the energy saving potential, there is a need for easily implementable methods to monitor the system output. This is because information is needed to identify inefficient operation of the fluid handling system and to control the output of the pumping system according to process needs. Model-based pump or fan monitoring methods implemented in variable speed drives have proven to be able to give information on the system output without additional metering; however, the current model-based methods may not be usable or sufficiently accurate in the whole operation range of the fluid handling device. To apply model-based system monitoring in a wider selection of systems and to improve the accuracy of the monitoring, this paper proposes a new method for pump and fan output monitoring with variable-speed drives. The method uses a combination of already known operating point estimation methods. Laboratory measurements are used to verify the benefits and applicability of the improved estimation method, and the new method is compared with five previously introduced model-based estimation methods. According to the laboratory measurements, the new estimation method is the most accurate and reliable of the model-based estimation methods.
Resumo:
The growing population in cities increases the energy demand and affects the environment by increasing carbon emissions. Information and communications technology solutions which enable energy optimization are needed to address this growing energy demand in cities and to reduce carbon emissions. District heating systems optimize the energy production by reusing waste energy with combined heat and power plants. Forecasting the heat load demand in residential buildings assists in optimizing energy production and consumption in a district heating system. However, the presence of a large number of factors such as weather forecast, district heating operational parameters and user behavioural parameters, make heat load forecasting a challenging task. This thesis proposes a probabilistic machine learning model using a Naive Bayes classifier, to forecast the hourly heat load demand for three residential buildings in the city of Skellefteå, Sweden over a period of winter and spring seasons. The district heating data collected from the sensors equipped at the residential buildings in Skellefteå, is utilized to build the Bayesian network to forecast the heat load demand for horizons of 1, 2, 3, 6 and 24 hours. The proposed model is validated by using four cases to study the influence of various parameters on the heat load forecast by carrying out trace driven analysis in Weka and GeNIe. Results show that current heat load consumption and outdoor temperature forecast are the two parameters with most influence on the heat load forecast. The proposed model achieves average accuracies of 81.23 % and 76.74 % for a forecast horizon of 1 hour in the three buildings for winter and spring seasons respectively. The model also achieves an average accuracy of 77.97 % for three buildings across both seasons for the forecast horizon of 1 hour by utilizing only 10 % of the training data. The results indicate that even a simple model like Naive Bayes classifier can forecast the heat load demand by utilizing less training data.
Resumo:
With the new age of Internet of Things (IoT), object of everyday such as mobile smart devices start to be equipped with cheap sensors and low energy wireless communication capability. Nowadays mobile smart devices (phones, tablets) have become an ubiquitous device with everyone having access to at least one device. There is an opportunity to build innovative applications and services by exploiting these devices’ untapped rechargeable energy, sensing and processing capabilities. In this thesis, we propose, develop, implement and evaluate LoadIoT a peer-to-peer load balancing scheme that can distribute tasks among plethora of mobile smart devices in the IoT world. We develop and demonstrate an android-based proof of concept load-balancing application. We also present a model of the system which is used to validate the efficiency of the load balancing approach under varying application scenarios. Load balancing concepts can be apply to IoT scenario linked to smart devices. It is able to reduce the traffic send to the Cloud and the energy consumption of the devices. The data acquired from the experimental outcomes enable us to determine the feasibility and cost-effectiveness of a load balanced P2P smart phone-based applications.
Resumo:
F/A-18-monitoimihävittäjän ohjaajan tehtävän kognitiiviset vaatimukset ovat korkeat. Kognitiivisen kuormituksen taso vaikuttaa hävittäjäohjaajan suoritustasoon ja subjektiivisiin tun-temuksiin. Yerkesin ja Dodsonin periaatteen mukaisesti erittäin matala tai erittäin korkea kuormituksen taso laskee suoritustasoa. Optimaalinen kuormituksen taso ja suoritustaso saa-vutetaan jossain ääripäiden välillä. Hävittäjäohjaajan kognitiivisen kuormituksen tasoon vaikuttaa lentotehtävän suorittamiseen vaadittava henkinen ponnistelu. Vaadittavan ponnistelun taso riippuu tehtävien vaatimustasosta ja määrästä, tehtäviin käytettävissä olevasta ajasta sekä yksilöllisistä ominaisuuksista. Tutkimuksessa mitattiin kognitiivisen kuormituksen tasoa subjektiivisen arvioinnin menetelmällä NASA-TLX (National Aeronautics and Space Administration - Task Load Index) ja MCH (Modified Cooper-Harper) -mittareilla. Tutkimuksessa selvitettiin mittareiden havaintoarvojen muutosta, sensitiivisyyttä ja yhdenmukaisuutta kognitiivisen kuormituksen tason muuttuessa. Tutkimuksen mittauksiin osallistui 35 Suomen ilmavoimien aktiivisessa palveluksessa olevaa F/A-18-monitoimihävittäjäohjaajaa. Koehenkilöiden lentotuntien keskiarvo F/A-18-monitoimihävittäjällä oli 598 tuntia ja keskihajonta 445 tuntia. Koehenkilöiden tehtävänä oli lentää F/A-18-virtuaalisimulaattorilla 11 ILS (Instrument Landing System) -mittarilähestymistä eri aloitusetäisyyksiltä kiitotien kynnyksestä. Kognitiivisesti kuormitta-van mittarilähestymistehtävän aikana kuormituksen tasoa nostettiin lisätehtävillä ja vähentä-mällä tehtäviin käytettävissä olevaa aikaa. Koehenkilöitä pyydettiin ponnistelemaan mahdollisimman paljon tehtävien suorittamisen aikana hyvän suoritustason ylläpitämiseksi. Tulosten perusteella mittareiden havaintoarvot muuttuivat kognitiivisen kuormituksen tason muuttuessa. Käytettävissä olevan ajan vaikutus kognitiivisen kuormituksen tasoon oli tilastollisesti erittäin merkitsevä. Mittarit olivat sensitiivisiä kognitiivisen kuormituksen tason muutokselle ja antoivat yhdenmukaisia havaintoarvoja.
Resumo:
Since its discovery, chaos has been a very interesting and challenging topic of research. Many great minds spent their entire lives trying to give some rules to it. Nowadays, thanks to the research of last century and the advent of computers, it is possible to predict chaotic phenomena of nature for a certain limited amount of time. The aim of this study is to present a recently discovered method for the parameter estimation of the chaotic dynamical system models via the correlation integral likelihood, and give some hints for a more optimized use of it, together with a possible application to the industry. The main part of our study concerned two chaotic attractors whose general behaviour is diff erent, in order to capture eventual di fferences in the results. In the various simulations that we performed, the initial conditions have been changed in a quite exhaustive way. The results obtained show that, under certain conditions, this method works very well in all the case. In particular, it came out that the most important aspect is to be very careful while creating the training set and the empirical likelihood, since a lack of information in this part of the procedure leads to low quality results.