68 resultados para Properties of circles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aim of this thesis is to study the effect of pigments on the weathering properties of wood-polypropylene composites (WPC). The studied properties are color change, water absorption, thickness swelling and Charpy impact strength. The impact of weathering and UV exposure on WPCs was studied by using pigments and minerals as protective agents. The study shows that the pigments and/or mineral fillers can be used to improve the weathering properties of WPCs. The effect of pigments was found to vary with the type of pigment and the method of weathering. The black pigment, an inorganic carbon black master-batch, was found to be the most effective one in reduction of the discoloration of WPCs. By preventing discoloration, and further reducing the degradation of the surface of the WPC, the pigments were found to reduce the decrease in the impact strength after weathering. As well as UV protection, the moisture resistance is a significant factor affecting the durability of WPCs. The addition of mineral fillers was found to improve the moisture-related properties, such as water absorption and thickness swelling, of WPC significantly. According to the findings, addition of pigments and mineral fillers to wood-polypropylene composites appears to be beneficial: color stability and moisture resistance can be enhanced especially in outdoor weathering. The combined effect of black pigment (carbon black master-batch) and wollastonite as a mineral filler was found to bring about the most effective properties against weathering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this study was to develop mathematical model capable to describe the effect of ultrastructural features on the longitudinal modulus of elasticity of softwood fiber. Another objective was to identify, based on ultrastructural features, a potential explanatory factor for the mechanical difference between Norway spruce and Scots pine fibers and to demonstrate its influence utilizing developed modelling tools. According to the literature, the main difference between the pine and spruce fibers is the pit structure, which is clearly different in these fibers. The spruce fiber contains a lot of tiny pits, whereas the pits of the pine fiber are larger and the total number of them is smaller. The effect of the pits on the longitudinal modulus of elasticity of fiber is studied with both the analytical and the numerical model. The results show that, although the spruce fiber seems to contain clearly more pits, larger pits appearing in the pine fiber turn out to have a stronger influence on the longitudinal modulus of elasticity of the fiber. The effect of local variation of microfibril angle which occurs near the pits seems to be minor. Moreover, the results suggest that spruce fibers may have higher ultimate strength due to the more uniform straining behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, the influence of the functionalization of graphene and graphite on their magnetic properties was investigated. The functionalization was performed by covalent attaching of a phenyl groups with three different radicals (4-bromoaniline, 4-chloroaniline and 4-nitroaniline). Magnetic properties were measured by SQUID magnetometer. Both pristine graphite and graphene showed strong diamagnetic behavior. For good quality graphite, diamagnetism was found to be temperature-dependent. All samples demonstrated noticeable paramagnetic contribution below 50 K. According to fitting experimental results with Brillouin function and Curie law, it was shown that paramagnetism is provided by small clusters of spins (superparamagnetic behavior). Moreover, the clusters size and spin concentrations were calculated. For the samples functionalized with nitroaniline the antiferromagnetic transition around 120 K was observed. To explain this behavior, a simple model was proposed. Additional analysis of the graphene quality, structure and composition of the samples was carried out by HRTEM, EDS mapping, Raman spectroscopy and X-ray diffraction techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin-film photovoltaic solar cells based on the Cu(In1−xGax)Se2 (CIGS) alloys have attracted more and more attention due to their large optical absorption coefficient, long term stability, low cost, and high efficiency. Modern theoretical studies of this material with first-principles calculations can provide accurate description of the electronic structure and yield results in close agreement with experimental values, but takes a large amount of calculation time. In this work, we use first-principles calculations based on the computationally affordable meta- generalized gradient approximation of the density-functional theory to investigate electronic and structural properties of the CIGS alloys. We report on the simulation of the lattice parameters and band gaps, as a function of chemical composition. The obtained results were found to be in a good agreement with the available experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since cellulose is a linear macromolecule it can be used as a material for regenerated cellulose fiber products e.g. in textile fibers or film manufacturing. Cellulose is not thermoformable, thus the manufacturing of these regenerated fibers is mainly possible through dissolution processes preceding the regeneration process. However, the dissolution of cellulose in common solvents is hindered due to inter- and intra-molecular hydrogen bonds in the cellulose chains, and relatively high crystallinity. Interestingly at subzero temperatures relatively dilute sodium hydroxide solutions can be used to dissolve cellulose to a certain extent. The objective of this work was to investigate the possible factors that govern the solubility of cellulose in aqueous NaOH and the solution stability. Cellulose-NaOH solutions have the tendency to form a gel over time and at elevated temperature, which creates challenges for further processing. The main target of this work was to achieve high solubility of cellulose in aqueous NaOH without excessively compromising the solution stability. In the literature survey an overview of the cellulose dissolution is given and possible factors contributing to the solubility and solution properties of cellulose in aqueous NaOH are reviewed. Furthermore, the concept of solution rheology is discussed. In the experimental part the focus was on the characterization of the used materials and properties of the prepared solutions mainly concentrating on cellulose solubility and solution stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments were carried out to determine the properties of the welded joints in 8mm thick high-strength steels produced by quenching and tempering and thermomechanical rolling with accelerated cooling (tensile strength 821–835 MPa). The dependence of the strength, elongation, hardness, impact energy and crack opening displacement on the heat input in the range 1.0–0.7 kJ mm21 was determined. The results show that the dependence of the strength of the welded joints decreases and that of the elongation increases. The heat input has only a slight effect on the impact energy and crack opening displacement in the heat-affected zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Master’s Thesis analyses the effectiveness of different hedging models on BRICS (Brazil, Russia, India, China, and South Africa) countries. Hedging performance is examined by comparing two different dynamic hedging models to conventional OLS regression based model. The dynamic hedging models being employed are Constant Conditional Correlation (CCC) GARCH(1,1) and Dynamic Conditional Correlation (DCC) GARCH(1,1) with Student’s t-distribution. In order to capture the period of both Great Moderation and the latest financial crisis, the sample period extends from 2003 to 2014. To determine whether dynamic models outperform the conventional one, the reduction of portfolio variance for in-sample data with contemporaneous hedge ratios is first determined and then the holding period of the portfolios is extended to one and two days. In addition, the accuracy of hedge ratio forecasts is examined on the basis of out-of-sample variance reduction. The results are mixed and suggest that dynamic hedging models may not provide enough benefits to justify harder estimation and daily portfolio adjustment. In this sense, the results are consistent with the existing literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, bacteriorhodopsin (BR) photosensor’s optical and electrical properties were studied. The BR sensor consisted of a dry film with BR in polyvinyl alcohol and covered with transparent conductors. In the experiments the BR photocycle was started with two lasers. The characteristics of the BR sensor were measured in two ways. The first approach was theoretical and it required knowing the laser parameters. The second way required assembling a measurement setup for the optical response measurements. However, no measurable results were obtained due to low laser power. The photoelectric response was measured in the experiments with two laser systems and the amplifier was tested. In the experiment with a Cavitar laser, the photoelectric response was obtained. In the experiment with FemtoFiber Pro laser, the photoelectric response was not measured. The expected amplitude of the response was obtained. The experimental data was analyzed and possible solutions for reducing the interference were given.