69 resultados para Nuclear reactor accidents
Resumo:
This thesis concentrates on the validation of a generic thermal hydraulic computer code TRACE under the challenges of the VVER-440 reactor type. The code capability to model the VVER-440 geometry and thermal hydraulic phenomena specific to this reactor design has been examined and demonstrated acceptable. The main challenge in VVER-440 thermal hydraulics appeared in the modelling of the horizontal steam generator. The major challenge here is not in the code physics or numerics but in the formulation of a representative nodalization structure. Another VVER-440 specialty, the hot leg loop seals, challenges the system codes functionally in general, but proved readily representable. Computer code models have to be validated against experiments to achieve confidence in code models. When new computer code is to be used for nuclear power plant safety analysis, it must first be validated against a large variety of different experiments. The validation process has to cover both the code itself and the code input. Uncertainties of different nature are identified in the different phases of the validation procedure and can even be quantified. This thesis presents a novel approach to the input model validation and uncertainty evaluation in the different stages of the computer code validation procedure. This thesis also demonstrates that in the safety analysis, there are inevitably significant uncertainties that are not statistically quantifiable; they need to be and can be addressed by other, less simplistic means, ultimately relying on the competence of the analysts and the capability of the community to support the experimental verification of analytical assumptions. This method completes essentially the commonly used uncertainty assessment methods, which are usually conducted using only statistical methods.
Resumo:
The use of exact coordinates of pebbles and fuel particles of pebble bed reactor modelling becoming possible in Monte Carlo reactor physics calculations is an important development step. This allows exact modelling of pebble bed reactors with realistic pebble beds without the placing of pebbles in regular lattices. In this study the multiplication coefficient of the HTR-10 pebble bed reactor is calculated with the Serpent reactor physics code and, using this multiplication coefficient, the amount of pebbles required for the critical load of the reactor. The multiplication coefficient is calculated using pebble beds produced with the discrete element method and three different material libraries in order to compare the results. The received results are lower than those from measured at the experimental reactor and somewhat lower than those gained with other codes in earlier studies.
Resumo:
Wind energy has obtained outstanding expectations due to risks of global warming and nuclear energy production plant accidents. Nowadays, wind farms are often constructed in areas of complex terrain. A potential wind farm location must have the site thoroughly surveyed and the wind climatology analyzed before installing any hardware. Therefore, modeling of Atmospheric Boundary Layer (ABL) flows over complex terrains containing, e.g. hills, forest, and lakes is of great interest in wind energy applications, as it can help in locating and optimizing the wind farms. Numerical modeling of wind flows using Computational Fluid Dynamics (CFD) has become a popular technique during the last few decades. Due to the inherent flow variability and large-scale unsteadiness typical in ABL flows in general and especially over complex terrains, the flow can be difficult to be predicted accurately enough by using the Reynolds-Averaged Navier-Stokes equations (RANS). Large- Eddy Simulation (LES) resolves the largest and thus most important turbulent eddies and models only the small-scale motions which are more universal than the large eddies and thus easier to model. Therefore, LES is expected to be more suitable for this kind of simulations although it is computationally more expensive than the RANS approach. With the fast development of computers and open-source CFD software during the recent years, the application of LES toward atmospheric flow is becoming increasingly common nowadays. The aim of the work is to simulate atmospheric flows over realistic and complex terrains by means of LES. Evaluation of potential in-land wind park locations will be the main application for these simulations. Development of the LES methodology to simulate the atmospheric flows over realistic terrains is reported in the thesis. The work also aims at validating the LES methodology at a real scale. In the thesis, LES are carried out for flow problems ranging from basic channel flows to real atmospheric flows over one of the most recent real-life complex terrain problems, the Bolund hill. All the simulations reported in the thesis are carried out using a new OpenFOAM® -based LES solver. The solver uses the 4th order time-accurate Runge-Kutta scheme and a fractional step method. Moreover, development of the LES methodology includes special attention to two boundary conditions: the upstream (inflow) and wall boundary conditions. The upstream boundary condition is generated by using the so-called recycling technique, in which the instantaneous flow properties are sampled on aplane downstream of the inlet and mapped back to the inlet at each time step. This technique develops the upstream boundary-layer flow together with the inflow turbulence without using any precursor simulation and thus within a single computational domain. The roughness of the terrain surface is modeled by implementing a new wall function into OpenFOAM® during the thesis work. Both, the recycling method and the newly implemented wall function, are validated for the channel flows at relatively high Reynolds number before applying them to the atmospheric flow applications. After validating the LES model over simple flows, the simulations are carried out for atmospheric boundary-layer flows over two types of hills: first, two-dimensional wind-tunnel hill profiles and second, the Bolund hill located in Roskilde Fjord, Denmark. For the twodimensional wind-tunnel hills, the study focuses on the overall flow behavior as a function of the hill slope. Moreover, the simulations are repeated using another wall function suitable for smooth surfaces, which already existed in OpenFOAM® , in order to study the sensitivity of the flow to the surface roughness in ABL flows. The simulated results obtained using the two wall functions are compared against the wind-tunnel measurements. It is shown that LES using the implemented wall function produces overall satisfactory results on the turbulent flow over the two-dimensional hills. The prediction of the flow separation and reattachment-length for the steeper hill is closer to the measurements than the other numerical studies reported in the past for the same hill geometry. The field measurement campaign performed over the Bolund hill provides the most recent field-experiment dataset for the mean flow and the turbulence properties. A number of research groups have simulated the wind flows over the Bolund hill. Due to the challenging features of the hill such as the almost vertical hill slope, it is considered as an ideal experimental test case for validating micro-scale CFD models for wind energy applications. In this work, the simulated results obtained for two wind directions are compared against the field measurements. It is shown that the present LES can reproduce the complex turbulent wind flow structures over a complicated terrain such as the Bolund hill. Especially, the present LES results show the best prediction of the turbulent kinetic energy with an average error of 24.1%, which is a 43% smaller than any other model results reported in the past for the Bolund case. Finally, the validated LES methodology is demonstrated to simulate the wind flow over the existing Muukko wind farm located in South-Eastern Finland. The simulation is carried out only for one wind direction and the results on the instantaneous and time-averaged wind speeds are briefly reported. The demonstration case is followed by discussions on the practical aspects of LES for the wind resource assessment over a realistic inland wind farm.
Resumo:
Currently widely accepted consensus is that greenhouse gas emissions produced by the mankind have to be reduced in order to avoid further global warming. The European Union has set a variety of CO2 reduction and renewable generation targets for its member states. The current energy system in the Nordic countries is one of the most carbon free in the world, but the aim is to achieve a fully carbon neutral energy system. The objective of this thesis is to consider the role of nuclear power in the future energy system. Nuclear power is a low carbon energy technology because it produces virtually no air pollutants during operation. In this respect, nuclear power is suitable for a carbon free energy system. In this master's thesis, the basic characteristics of nuclear power are presented and compared to fossil fuelled and renewable generation. Nordic energy systems and different scenarios in 2050 are modelled. Using models and information about the basic characteristics of nuclear power, an opinion is formed about its role in the future energy system in Nordic countries. The model shows that it is possible to form a carbon free Nordic energy system. Nordic countries benefit from large hydropower capacity which helps to offset fluctuating nature of wind power. Biomass fuelled generation and nuclear power provide stable and predictable electricity throughout the year. Nuclear power offers better energy security and security of supply than fossil fuelled generation and it is competitive with other low carbon technologies.
Resumo:
Tässä kandidaattityössä on käsitelty Rusatom Overseas Oy:n toimittaman ydinvoimalaitoksen AES-2006 reaktoripiiriin kuuluvan painesäiliön ominaisuuksia, materiaalivalintoja ja niiden kriteerejä, reaktorin valmistusmenettelyä ja sen asennusvaiheita mukaan lukien pääkiertoputkiston hitsaus julkisesti saatavilla olevan materiaalin pohjalta. Tässä kandidaatintyössä on kuvattu AES-2006 ydinvoimalaitoksen kehityshistoria ja lueteltu sen keskeisimmät eroavuudet edeltäjistään. Työn keskeisessä osassa on tarkastettu VVER-1200 reaktorin painesäiliön toimittajan ilmoittaman teräksen koostumus ja tärkeimpien seosaineiden vaikutus painesäiliöön ja koko voimalaitoksen käyttöikään. Tämän jälkeen on käsitelty reaktorin painesäiliön valmistustekniikkaa ja asennusta reaktorirakennuksessa. Johtopäätöksissä on vedetty yhteen tulokset ja otettu kantaa vertailukelpoiseen painesäiliöteräkseen ja sen ominaisuuksiin. Tärkeimmiksi seikoiksi nousevat tässä työssä seosaineiden myönteinen ja kielteinen vaikutus koko ydinvoimalaitoksen käyttöikään, ja ko. seosaineiden hallinnan tärkeys valmistus- ja asennusvaiheissa.
Resumo:
Ydinvoimaloissa käytetään toiminnallisia syvyyssuuntaisia puolustustasoja ydinturvallisuuden varmistamiseksi. Puolustuksen viidennessä ja viimeisessä tasossa pyritään lieventämään vakavan onnettomuuden ympäristövaikutuksia ja väestöön kohdistuvaa säteilyaltistusta. Suojelutoimien onnistumisen kannalta on tärkeää pystyä arvioimaan etukäteen radioaktiivisen päästön suuruus ja ajankohta mahdollisimman tarkasti. Tässä diplomityössä on esitelty radioaktiivisen päästön suuruuteen ja ajankohtaan vaikuttavat ilmiöt sekä niihin liittyvät merkittävät epävarmuudet. Ydinvoimalaitosten turvallisuusjärjestelmien osalta tarkastelun kohteena ovat suomalaiset käynnissä olevat reaktorit Olkiluoto 1 & 2 sekä Loviisa 1 & 2. Kaikissa Suomen laitoksissa on käytössä vakavan onnettomuuden hallintaan soveltuvia järjestelmiä ja toimintoja. Työssä etsittiin tietoa eri maiden radioaktiivisen päästön ennustamiseen käytettävistä ohjelmista. Eri mailla on eri toimintaperiaatteilla ja laajuuksilla toimivia ohjelmia. Osassa työkaluja käytetään ennalta laskettuja tuloksia ja osassa onnettomuustilanteet lasketaan onnettomuuden aikana. Lisäksi lähivuosina Euroopassa on tavoitteena kehittää yhteistyömaille yhteisiä valmiuskäyttöön soveltuvia ohjelmia. Työssä kehitettiin uusi valmiustyökalu Säteilyturvakeskuksen käyttöön Microsoft Excelin VBAohjelmoinnin avulla. Valmiustyökalu hyödyntää etukäteen laskettujen todennäköisyyspohjaisten analyysien onnettomuussekvenssejä. Tällöin valmiustilanteessa laitoksen tilanteen kehittymistä on mahdollista arvioida suojarakennuksen toimintakyvyn perusteella. Valmiustyökalu pyrittiin kehittämään mahdollisimman helppokäyttöiseksi ja helposti päivitettäväksi.
Resumo:
This thesis addresses the coolability of porous debris beds in the context of severe accident management of nuclear power reactors. In a hypothetical severe accident at a Nordic-type boiling water reactor, the lower drywell of the containment is flooded, for the purpose of cooling the core melt discharged from the reactor pressure vessel in a water pool. The melt is fragmented and solidified in the pool, ultimately forming a porous debris bed that generates decay heat. The properties of the bed determine the limiting value for the heat flux that can be removed from the debris to the surrounding water without the risk of re-melting. The coolability of porous debris beds has been investigated experimentally by measuring the dryout power in electrically heated test beds that have different geometries. The geometries represent the debris bed shapes that may form in an accident scenario. The focus is especially on heap-like, realistic geometries which facilitate the multi-dimensional infiltration (flooding) of coolant into the bed. Spherical and irregular particles have been used to simulate the debris. The experiments have been modeled using 2D and 3D simulation codes applicable to fluid flow and heat transfer in porous media. Based on the experimental and simulation results, an interpretation of the dryout behavior in complex debris bed geometries is presented, and the validity of the codes and models for dryout predictions is evaluated. According to the experimental and simulation results, the coolability of the debris bed depends on both the flooding mode and the height of the bed. In the experiments, it was found that multi-dimensional flooding increases the dryout heat flux and coolability in a heap-shaped debris bed by 47–58% compared to the dryout heat flux of a classical, top-flooded bed of the same height. However, heap-like beds are higher than flat, top-flooded beds, which results in the formation of larger steam flux at the top of the bed. This counteracts the effect of the multi-dimensional flooding. Based on the measured dryout heat fluxes, the maximum height of a heap-like bed can only be about 1.5 times the height of a top-flooded, cylindrical bed in order to preserve the direct benefit from the multi-dimensional flooding. In addition, studies were conducted to evaluate the hydrodynamically representative effective particle diameter, which is applied in simulation models to describe debris beds that consist of irregular particles with considerable size variation. The results suggest that the effective diameter is small, closest to the mean diameter based on the number or length of particles.
Resumo:
Currently, the power generation is one of the most significant life aspects for the whole man-kind. Barely one can imagine our life without electricity and thermal energy. Thus, different technologies for producing those types of energy need to be used. Each of those technologies will always have their own advantages and disadvantages. Nevertheless, every technology must satisfy such requirements as efficiency, ecology safety and reliability. In the matter of the power generation with nuclear energy utilization these requirements needs to be highly main-tained, especially since accidents on nuclear power plants may cause very long term deadly consequences. In order to prevent possible disasters related to the accident on a nuclear power plant strong and powerful algorithms were invented in last decades. Such algorithms are able to manage calculations of different physical processes and phenomena of real facilities. How-ever, the results acquired by the computing must be verified with experimental data.