73 resultados para Material survival
Resumo:
The structure and optical properties of thin films based on C60
Resumo:
Deregulated proliferation has been recognized among the most important factors promoting breast cancer development and progression. The aim of the project is to gain understanding of the role of specific cell cycle regulators of metaphase-anaphase transition and evaluate their potential in breast cancer prognostication and treatment decisions. Metaphase-anaphase transition is triggered by activation of anaphase promoting complex (APC) which is activated by a cascade of regulatory proteins, among them securin, Cdc20 and Cdc27. These proteins promote the metaphase–anaphase transition and participate in the timely separation of the chromatids. This study is based on a patient material of approximately 600 breast cancer patients and up to 22 years of follow-up. As the main observation, based on DNA cytometric and immunohistochemical methods, securin, Cdc20 and Cdc27 protein expressions were associated with abnormal DNA content and outcome of breast cancer. In the studied patient material, high securin expression alone and in combination with Cdc20 and Cdc27 predicted up to 9.8-fold odds for aneuploid DNA content in human breast cancer. In Kaplan–Meier analyses, high expression of securin systematically indicated decrease in breast cancer survival as compared to low expression cases. The adverse effect of high securin expression was further strengthened by combining it with Cdc20 or Cdc27 expressions, resulting in up to 6.8-fold risk of breast cancer death. High securin and Cdc20 expression was also associated with triple-negative breast cancer type with high statistical significance. Securin, Cdc20 or Cdc27 have not previously been investigated in a clinically relevant large breast cancer patient material or in association with DNA ploidy. The present findings suggest that the studied proteins may serve as potential biomarkers for identification of aggressive course of disease and unfavourable outcome of human breast cancer, and that they may provide a future research aim for understanding abnormal proliferation in malignant disease.
Resumo:
Full contour monolithic zirconia restorations have shown an increased popularity in the dental field over the recent years, owing to its mechanical and acceptable optical properties. However, many features of the restoration are yet to be researched and supported by clinical studies to confirm its place among the other indirect restorative materials This series of in vitro studies aimed at evaluating and comparing the optical and mechanical properties, light cure irradiance, and cement polymerization of multiple monolithic zirconia material at variable thicknesses, environments, treatments, and stabilization. Five different monolithic zirconia materials, four of which were partially stabilized and one fully stabilized were investigated. The optical properties in terms of surface gloss, translucency parameter, and contrast ratio were determined via a reflection spectrophotometer at variable thicknesses, coloring, sintering method, and after immersion in an acidic environment. Light cure irradiance and radiant exposure were quantified through the specimens at variable thicknesses and the degree of conversion of two dual-cure cements was determined via Fourier Transform Infrared spectroscopy. Bi-axial flexural strength was evaluated to compare between the partially and fully stabilized zirconia prepared using different coloring and sintering methods. Surface characterization was performed using a scanning electron microscope and a spinning disk confocal microscope. The surface gloss and translucency of the zirconia investigated were brand and thickness dependent with the translucency values decreasing as the thickness increased. Staining decreased the translucency of the zirconia and enhanced surface gloss as well as the flexural strength of the fully stabilized zirconia but had no effect on partially stabilized zirconia. Immersion in a corrosive acid increased surface gloss and decreased the translucency of some zirconia brands. Zirconia thickness was inversely related to the amount of light irradiance, radiant exposure, and degree of monomer conversion. Type of sintering furnace had no effect on the optical and mechanical properties of zirconia. Monolithic zirconia maybe classified as a semi-translucent material that is well influenced by the thickness, limiting its use in the esthetic zones. Conventional acid-base reaction, autopolymerizing and dual-cure cements are recommended for its cementation. Its desirable mechanical properties give it a high potential as a restoration for posterior teeth. However, close monitoring with controlled clinical studies must be determined before any definite clinical recommendations can be drawn.
Resumo:
The aim of this work was to calibrate the material properties including strength and strain values for different material zones of ultra-high strength steel (UHSS) welded joints under monotonic static loading. The UHSS is heat sensitive and softens by heat due to welding, the affected zone is heat affected zone (HAZ). In this regard, cylindrical specimens were cut out from welded joints of Strenx® 960 MC and Strenx® Tube 960 MH, were examined by tensile test. The hardness values of specimens’ cross section were measured. Using correlations between hardness and strength, initial material properties were obtained. The same size specimen with different zones of material same as real specimen were created and defined in finite element method (FEM) software with commercial brand Abaqus 6.14-1. The loading and boundary conditions were defined considering tensile test values. Using initial material properties made of hardness-strength correlations (true stress-strain values) as Abaqus main input, FEM is utilized to simulate the tensile test process. By comparing FEM Abaqus results with measured results of tensile test, initial material properties will be revised and reused as software input to be fully calibrated in such a way that FEM results and tensile test results deviate minimum. Two type of different S960 were used including 960 MC plates, and structural hollow section 960 MH X-joint. The joint is welded by BöhlerTM X96 filler material. In welded joints, typically the following zones appear: Weld (WEL), Heat affected zone (HAZ) coarse grained (HCG) and fine grained (HFG), annealed zone, and base material (BaM). Results showed that: The HAZ zone is softened due to heat input while welding. For all the specimens, the softened zone’s strength is decreased and makes it a weakest zone where fracture happens while loading. Stress concentration of a notched specimen can represent the properties of notched zone. The load-displacement diagram from FEM modeling matches with the experiments by the calibrated material properties by compromising two correlations of hardness and strength.
Resumo:
The thesis examines the competencies that enable business survival in changing business environments from the perspective of Russian and Finnish micro, small, and medium-sized enterprises in the field of forest industry. Additionally, it studies the competence transformation necessary in SMEs for successful continuation of business operations when a firm considers transferring its business to another industry. The dissertation builds a holistic firm-level view of survival competencies for SMEs facing changes in their business environments. The holistic firm-level view of competencies includes both the individual-level and the firm-level perspectives, regardless of the position of the person in a firm. The findings highlight the importance of high-level individual competencies and the ability to perform versatile tasks in a firm. In addition, continuous business environment scanning, self-evaluation of personal competencies, willingness to renew and change, open-mindedness, and a readiness to network, are competencies that belong to and need to be taken care of by everybody – employees and employers - in a firm. In addition to previous competencies, an ability to manage every-day business also needs to be embedded in SME owners/managers. Furthermore, Russian SMEs seem to be more proactive in change situations, when compared with Finnish SMEs, which are used to operate in a more stable business environment. In conclusion, it can be said that the thesis adds to SME literature by introducing the concept of ‘SME-level competencies’, a combination of previously discussed organisational and networking competencies which are needed in order to survive through change. Furthermore, the thesis concludes with new competence classifications, such as operational and change competencies, which offer new information concerning the required competencies by which a firm may reduce the resistance to change that can hinder business renewal. For SME practitioners, the study suggests proper preparation and proactive operations in their business to reduce the influence of endless changes, and reminds SME owners/managers that changes are, however, a significant source of new business opportunities. For educational players, the study suggests upgrading educational and training systems by improving the training as regards attitudes towards work, and especially training in the comprehensive working abilities needed in SMEs to master diverse tasks. Finally, for public actors the study suggests providing stronger support to entrepreneurs by boosting SMEs entrepreneurial conditions and the existing business possibilities in change situations. This can be done by encouraging a legislative and entrepreneurial climate that responds better to the demands of SMEs.
Resumo:
Building Integrated Photovoltaics (BIPV) are considered as the future of photovoltaic (PV) technology. The advantage of BIPV system is its multi-functionality; they fulfil the functions of a building envelope with the added benefit of generating power by replacing the traditional roofing and façade materials with PV that generate power. In this thesis, different types of PV cells and modules have been described in detail with their efficiencies and usage trends in the last decade. The different BIPV products for roof and façade are discussed in detail giving several examples. The electricity generation potential of BIPV in selected countries is compared with their actual electricity consumption. Further, the avoided greenhouse gas (GHG) emissions associated with electricity generation from traditional sources and transportation and distribution (T&D) losses are calculated. The results illustrate huge savings in GHGs. In BIPV different types of façade and backsheets are used. In this thesis, selected backsheets and façade were characterized in terms of their surface structure identification using infrared spectroscopy (FTIR-ATR), scanning electron microscopy with energy dispersive X-ray (SEM-EDX) and physical characterization using surface energy measurements. By using FTIR-ATR, surface polymeric materials were identified and with SEM-EDX, identification of the surface elements was possible. Surface energy measurements were useful in finding the adhesives and knowing the surface energies of the various backsheets and façade. The strength of adhesion between the facade and backsheets was studied using peel test. Four different types of adhesives were used to study the fracture pattern and peel tests values to identify the most suitable adhesive. It was found out that pretreatment increased the adhesive strength significantly.
Resumo:
This master’s thesis examines the effects of increased material recycling on different waste-to-energy concepts. With background study and a developed techno-economic computational method the feasibility of chosen scenarios with different combinations of mechanical treatment and waste firing technologies can be evaluated. The background study covers the waste scene of Finland, and potential market areas Poland and France. Calculated cases concentrate on municipal solid waste treatment in the Finnish operational environment. The chosen methodology to approach the objectives is techno-economic feasibility assessment. It combines calculation methods of literature and practical engineering to define the material and energy balances in chosen scenarios. The calculation results together with other operational and financial data can be concluded to net present values compared between the scenarios. For the comparison, four scenarios, most vital and alternative between each other, are established. The baseline scenario is grate firing of source separated mixed municipal solid waste. Second scenario is fluidized bed combustion of solid recovered fuel produced in mechanical treatment process with metal separation. Third scenario combines a biomaterial separation process to the solid recovered fuels preparation and in the last scenario plastics are separated in addition to the previous operations. The results indicated that the mechanical treatment scenarios still need to overcome some problems to become feasible. Problems are related to profitability, residue disposal and technical reliability. Many uncertainties are also related to the data gathered over waste characteristics, technical performance and markets. With legislative support and development of further processing technologies and markets of the recycled materials the scenarios with biomaterial and plastic separation may operate feasibly in the future.
Resumo:
Vapaakappalekartuntaan perustuva tilasto Suomessa julkaistuista pienpainatteista, julisteista, toimintakertomuksista ja kunnallisista julkaisuista vuodesta 1991 lähtien. Pienpainatelehdet sisältyvät tilastoon vuodesta 2014 lähtien
Resumo:
Vapaakappalekartuntaan perustuva tilasto Suomessa julkaistuista pienpainatteista, julisteista, toimintakertomuksista ja kunnallisista julkaisuista vuodesta 1991 lähtien. Pienpainatelehdet sisältyvät tilastoon vuodesta 2014 lähtien
Resumo:
The microenvironment within the tumor plays a central role in cellular signaling. Rapidly proliferating cancer cells need building blocks for structures as well as nutrients and oxygen for energy production. In normal tissue, the vasculature effectively transports oxygen, nutrient and waste products, and maintains physiological pH. Within a tumor however, the vasculature is rarely sufficient for the needs of tumor cells. This causes the tumor to suffer from lack of oxygen (hypoxia) and nutrients as well as acidification, as the glycolytic end product lactate is accumulated. Cancer cells harbor mutations enabling survival in the rough microenvironment. One of the best characterized mutations is the inactivation of the von Hippel-Lindau protein (pVHL) in clear cell renal cell carcinoma (ccRCC). Inactivation causes constitutive activation of hypoxia-inducible factor HIF which is an important survival factor regulating glycolysis, neovascularization and apoptosis. HIFs are normally regulated by HIF prolyl hydroxylases (PHDs), which in the presence of oxygen target HIF α-subunit to ubiquitination by pVHL and degradation by proteasomes. In my thesis work, I studied the role of PHDs in the survival of carcinoma cells in hypoxia. My work revealed an essential role of PHD1 and PHD3 in cell cycle regulation through two cyclin-dependent kinase inhibitors (CKIs) p21 and p27. Depletion of PHD1 or PHD3 caused a cell cycle arrest and subjected the carcinoma cells to stress and impaired the survival.
Resumo:
The increasing emphasis on energy efficiency is starting to yield results in the reduction in greenhouse gas emissions; however, the effort is still far from sufficient. Therefore, new technical solutions that will enhance the efficiency of power generation systems are required to maintain the sustainable growth rate, without spoiling the environment. A reduction in greenhouse gas emissions is only possible with new low-carbon technologies, which enable high efficiencies. The role of the rotating electrical machine development is significant in the reduction of global emissions. A high proportion of the produced and consumed electrical energy is related to electrical machines. One of the technical solutions that enables high system efficiency on both the energy production and consumption sides is high-speed electrical machines. This type of electrical machines has a high system overall efficiency, a small footprint, and a high power density compared with conventional machines. Therefore, high-speed electrical machines are favoured by the manufacturers producing, for example, microturbines, compressors, gas compression applications, and air blowers. High-speed machine technology is challenging from the design point of view, and a lot of research is in progress both in academia and industry regarding the solution development. The solid technical basis is of importance in order to make an impact in the industry considering the climate change. This work describes the multidisciplinary design principles and material development in high-speed electrical machines. First, high-speed permanent magnet synchronous machines with six slots, two poles, and tooth-coil windings are discussed in this doctoral dissertation. These machines have unique features, which help in solving rotordynamic problems and reducing the manufacturing costs. Second, the materials for the high-speed machines are discussed in this work. The materials are among the key limiting factors in electrical machines, and to overcome this limit, an in-depth analysis of the material properties and behavior is required. Moreover, high-speed machines are sometimes operating in a harsh environment because they need to be as close as possible to the rotating tool and fully exploit their advantages. This sets extra requirements for the materials applied.