78 resultados para External Carbon
Resumo:
Rajallistamisen kulttuuri(t): Eurooppalaistuminen ja kulttuurinen toimijuus Euroopan unionin ulkorajalla Euroopan integraation ja Euroopan unionin laajentumisen myötä EU:n sisärajat ovat avautuneet kun taas sen ulkorajoilla lisääntyvää rajan ylitysten valvontaa on pyritty kompensoimaan yhteistyön merkitystä ja verkostoitumista painottamalla. Tämä tutkimus pyrkii ymmärtämään EU:n ulkorajan muutosten merkitystä paikalliselle hyvinvoinnille sekä laajemmin ylirajaisuuden merkitystä identiteettien rakentamiselle raja-alueilla. EU:n ulkorajalla Puolassa ja Suomessa toteutettavat rajat ylittävät, kulttuuriin ja kulttuuriperintöön liittyvät, projektit kertovat eurooppalaistumisesta ja sen vaikutuksista kulttuurisen horisontin muutokselle. Voidaan nähdä miten Eurooppa kulttuurisena konstruktiona tulee paikallisesti merkittäväksi tavoilla jotka kertovat myös paikallisten toimijoiden mahdollisuuksista osallistua EU-rajan muutoksia ja paikallisuutta määritteleviin prosesseihin. Tällöin erityisesti raja-alueiden materiaalisen perinnön, ja sen mahdollistamien rajaan liittyvien neuvottelujen, voidaan nähdä kertovat Eurooppalaistumisesta myös ns. alhaaltapäin muotoutuvana prosessina. Artikkeliväitöskirjan taustalla on Puolan ja Suomen toisen maailmansodan seurauksena luovuttamien raja-alueiden (Kresy ja Karjala) asema nykyisellä Euroopan unionin ulkorajalla. Tutkimusidea perustuu tutkijan omiin kokemuksiin projekteista Puolan ja Ukrainan raja-alueella vuonna 2003, ennen Puolan liittymistä EU:hun vuonna 2004. Tutkimusaineisto on peräisin vuosien 2005-2009 aikana tehdyistä ns. monipaikkaisista (multi-sited) kenttätöistä EU:n ulkorajalla, pääosin Puolassa ja Suomessa, joissa kohteena olivat kulttuuria ja kulttuuriperintöä hyödyntävät, pääosin EU-rahoitetut, rajat ylittävät projektit. Materiaalit koostuvat 34 projektitoimijan haastatteluista, projektien materiaaleista, kenttätöiden havainnoista, paikallisten sanomalehtien artikkeleista sekä eri tasoilla (EU, kansallinen, alueellinen) tuotetuista ohjelmadokumenteista. Huomio kiinnittyy projektitoimijoiden tapoihin tehdä rajanylityksiä, sekä heidän tapaansa kokea ja hyödyntää raja-alueiden kulttuuriperintöä sekä ymmärtää niiden nykyistä kulttuurista moninaisuutta. Tällöin havaitaan miten erilaiset eurooppalaiset ideat, representaatiot ja käytänteet tulevat osaksi erilaisia translokaaleja, rajat ylittäviä ja paikallis-eurooppalaisia, suhteita. Vertailun kohteeksi eivät tällöin asetu projektit, toimijat tai raja-alueet sinänsä, vaan näihin suhteisiin liittyvä kulttuurinen toimijuus. Keskeinen käsite tutkimuksessa on ’rajallistaminen’, eli sen havaitseminen, miten jokainen rajan ylitys tarkoittaa myös neuvottelua rajasta. Rajan ylitys voi siis tarkoittaa myös sen vahvistamista. Myös itse raja voi asettua toiminnan kohteeksi, jolloin nousee esiin se, miten rajat ylittäviä ”kulttuureja” käytetään ja mitkä ovat niiden rajaan liittyvät paikalliset merkitykset. Kysymys on siitä kuka, ja kenelle, rajan merkityksiä neuvottelee? Projektitoimijoiden voidaan nähdä neuvottelevan näitä erilaisia ”kulttuureja” jotka tuottavat rajaa neuvottelevia suhteita, kuten esimerkiksi yhteistyön verkostojen tapaa ohittaa rajan paikallinen merkitys. Tämä rajallistaminen voi kuitenkin tarkoittaa myös paikallisten kulttuuristen identifikaatioiden huomioimista. Tällöin kyse on myös sen luovuuden havaitsemisesta, jota yksilöillä on kun he neuvottelevat näitä erilaisia rajallistamisen kulttuureja. Erityisesti toisen maailmansodan seurauksena valtiorajoista tuli vahvasti kansallisia kulttuureja erottavia, mutta nyt kulttuurisista rajoista neuvotellaan ja rajojen yli tapahtuva vuorovaikutus, sekä paikallisen ja Eurooppalaisen tason väliset suhteet, ja niiden moniäänisyys, nousevat tutkimuksen keskiöön. Tutkimuksen yhteenvedon kannalta keskeinen on kysymys raja/alueen kestävyydestä. Tyypillisesti verkostoitumista painottavan rajat ylittävän yhteistyön suhde paikalliseen yhteisöön voi jäädä häilyväksi. Tavoite paikallisen kulttuuriperinnön suojeluun ei itsessään vielä kerro sen merkityksestä paikalliselle hyvinvoinnille. Arvioinnin kannalta on hyödyllistä nähdä miten myös materiaalisella perinnöllä on toimijuutta osana paikallisuutta muokkaavia suhteita. Paikallisten asukkaiden kokemus rajasta voi edelleen olla että se ei ole muuttunut Neuvostoliiton ajoista, toisaalta EU:nkin voidaan toivoa määrittelemään rajansa vielä tarkemmin, jotta sen kansallinen luonne muuttuisi. Tutkimus nostaa esiin miten eurooppalaiset yhteistyötä ja kulttuurista moninaisuutta korostavat ideat ja käytänteet vaikuttavat erityisesti puolalaisten toimijoiden mahdollisuuksiin määritellä EU-rajaan liittyviä prosesseja osana paikallisia kulttuuriperinnön määrittelyjä. Paikallisten rajaan liittyvien kulttuuristen identifikaatioiden liittäminen osaksi projekteja ei kuitenkaan ole helppoa. Toisaalta rajan merkitys on sisäistetty osana arkea, toisaalta taas rajaan liittyvät suuret kertomukset kansallisena ja EU-rajana voivat olla etäännyttäviä tekijöitä. EU-raja, projektit ja monikulttuurisen perinnön autenttisuus ovat kuitenkin raja-alueen toimijoille ja yhteisöille mahdollisuus osallistua rajallistamiseen. Toiminnan kestävyyden kannalta kyse on pitkälti siitä avaako rajallistaminen paikallisen perinnön merkityksiä osana paikallis-eurooppalaisia suhteita.
Resumo:
This thesis presents a one-dimensional, semi-empirical dynamic model for the simulation and analysis of a calcium looping process for post-combustion CO2 capture. Reduction of greenhouse emissions from fossil fuel power production requires rapid actions including the development of efficient carbon capture and sequestration technologies. The development of new carbon capture technologies can be expedited by using modelling tools. Techno-economical evaluation of new capture processes can be done quickly and cost-effectively with computational models before building expensive pilot plants. Post-combustion calcium looping is a developing carbon capture process which utilizes fluidized bed technology with lime as a sorbent. The main objective of this work was to analyse the technological feasibility of the calcium looping process at different scales with a computational model. A one-dimensional dynamic model was applied to the calcium looping process, simulating the behaviour of the interconnected circulating fluidized bed reactors. The model incorporates fundamental mass and energy balance solvers to semi-empirical models describing solid behaviour in a circulating fluidized bed and chemical reactions occurring in the calcium loop. In addition, fluidized bed combustion, heat transfer and core-wall layer effects were modelled. The calcium looping model framework was successfully applied to a 30 kWth laboratory scale and a pilot scale unit 1.7 MWth and used to design a conceptual 250 MWth industrial scale unit. Valuable information was gathered from the behaviour of a small scale laboratory device. In addition, the interconnected behaviour of pilot plant reactors and the effect of solid fluidization on the thermal and carbon dioxide balances of the system were analysed. The scale-up study provided practical information on the thermal design of an industrial sized unit, selection of particle size and operability in different load scenarios.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Demand for increased energy efficiency has put an immense need for novel energy efficient systems. Electrical machines are considered as a much matured technology. Further improvement in this technology needs of finding new material to incorporate in electrical machines. Progress of carbon nanotubes research over the latest decade can open a new horizon in this aspect. Commonly known as ‘magic material’, carbon nanotubes (CNTs) have promising material properties that can change considerably the course of electrical machine design. It is believed that winding material based on carbon nanotubes create the biggest hope for a giant leap of modern technology and energy efficient systems. Though carbon nanotubes (CNTs) have shown amazing properties theoretically and practically during the latest 20 years, to the best knowledge of the author, no research has been carried out to find the future possibilities of utilizing carbon nanotubes as conductors in rotating electrical machines. In this thesis, the possibilities of utilizing carbon nanotubes in electrical machines have been studied. The design changes of electrical machine upon using carbon nanotubes instead of copper have been discussed vividly. A roadmap for this carbon nanotube winding machine has been discussed from synthesis, manufacturing and operational points of view.
Resumo:
Environmental issues, including global warming, have been serious challenges realized worldwide, and they have become particularly important for the iron and steel manufacturers during the last decades. Many sites has been shut down in developed countries due to environmental regulation and pollution prevention while a large number of production plants have been established in developing countries which has changed the economy of this business. Sustainable development is a concept, which today affects economic growth, environmental protection, and social progress in setting up the basis for future ecosystem. A sustainable headway may attempt to preserve natural resources, recycle and reuse materials, prevent pollution, enhance yield and increase profitability. To achieve these objectives numerous alternatives should be examined in the sustainable process design. Conventional engineering work cannot address all of these substitutes effectively and efficiently to find an optimal route of processing. A systematic framework is needed as a tool to guide designers to make decisions based on overall concepts of the system, identifying the key bottlenecks and opportunities, which lead to an optimal design and operation of the systems. Since the 1980s, researchers have made big efforts to develop tools for what today is referred to as Process Integration. Advanced mathematics has been used in simulation models to evaluate various available alternatives considering physical, economic and environmental constraints. Improvements on feed material and operation, competitive energy market, environmental restrictions and the role of Nordic steelworks as energy supplier (electricity and district heat) make a great motivation behind integration among industries toward more sustainable operation, which could increase the overall energy efficiency and decrease environmental impacts. In this study, through different steps a model is developed for primary steelmaking, with the Finnish steel sector as a reference, to evaluate future operation concepts of a steelmaking site regarding sustainability. The research started by potential study on increasing energy efficiency and carbon dioxide reduction due to integration of steelworks with chemical plants for possible utilization of available off-gases in the system as chemical products. These off-gases from blast furnace, basic oxygen furnace and coke oven furnace are mainly contained of carbon monoxide, carbon dioxide, hydrogen, nitrogen and partially methane (in coke oven gas) and have proportionally low heating value but are currently used as fuel within these industries. Nonlinear optimization technique is used to assess integration with methanol plant under novel blast furnace technologies and (partially) substitution of coal with other reducing agents and fuels such as heavy oil, natural gas and biomass in the system. Technical aspect of integration and its effect on blast furnace operation regardless of capital expenditure of new operational units are studied to evaluate feasibility of the idea behind the research. Later on the concept of polygeneration system added and a superstructure generated with alternative routes for off-gases pretreatment and further utilization on a polygeneration system producing electricity, district heat and methanol. (Vacuum) pressure swing adsorption, membrane technology and chemical absorption for gas separation; partial oxidation, carbon dioxide and steam methane reforming for methane gasification; gas and liquid phase methanol synthesis are the main alternative process units considered in the superstructure. Due to high degree of integration in process synthesis, and optimization techniques, equation oriented modeling is chosen as an alternative and effective strategy to previous sequential modelling for process analysis to investigate suggested superstructure. A mixed integer nonlinear programming is developed to study behavior of the integrated system under different economic and environmental scenarios. Net present value and specific carbon dioxide emission is taken to compare economic and environmental aspects of integrated system respectively for different fuel systems, alternative blast furnace reductants, implementation of new blast furnace technologies, and carbon dioxide emission penalties. Sensitivity analysis, carbon distribution and the effect of external seasonal energy demand is investigated with different optimization techniques. This tool can provide useful information concerning techno-environmental and economic aspects for decision-making and estimate optimal operational condition of current and future primary steelmaking under alternative scenarios. The results of the work have demonstrated that it is possible in the future to develop steelmaking towards more sustainable operation.
Resumo:
In literature CO 2 liquidization is well studied with steady state modeling. Steady state modeling gives an overview of the process but it doesn’t give information about process behavior during transients. In this master’s thesis three dynamic models of CO2 liquidization were made and tested. Models were straight multi-stage compression model and two compression liquid pumping models, one with and one without cold energy recovery. Models were made with Apros software, models were also used to verify that Apros is capable to model phase changes and over critical state of CO 2. Models were verified against compressor manufacturer’s data and simulation results presented in literature. From the models made in this thesis, straight compression model was found to be the most energy efficient and fastest to react to transients. Also Apros was found to be capable tool for dynamic liquidization modeling.
Resumo:
Carbon dioxide is regarded, nowadays, as a primary anthropogenic greenhouse gas leading to global warming. Hence, chemical fixation of CO2 has attracted much attention as a possible way to manufacture useful chemicals. One of the most interesting approaches of CO2 transformations is the synthesis of organic carbonates. Since conventional production technologies of these compounds involve poisonous phosgene and carbon monoxide, there is a need to develop novel synthetic methods that would better match the principles of "Green Chemistry" towards protection of the environment and human health. Over the years, synthesis of dimethyl carbonate was under intensive investigation in the academia and industry. Therefore, this study was entirely directed towards equally important homologue of carbonic esters family namely diethyl carbonate (DEC). Novel synthesis method of DEC starting from ethanol and CO2 over heterogeneous catalysts based on ceria (CeO2) was studied in the batch reactor. However, the plausible drawback of the reaction is thermodynamic limitations. The calculated values revealed that the reaction is exothermic (ΔrHØ298K = ─ 16.6 J/ ) and does not occur spontaneously at rooms temperature (ΔrGØ 298K = 35.85 kJ/mol). Moreover, co-produced water easily shifts the reaction equilibrium towards reactants excluding achievement of high yields of the carbonate. Therefore, in-situ dehydration has been applied using butylene oxide as a chemical water trap. A 9-fold enhancement in the amount of DEC was observed upon introduction of butylene oxide to the reaction media in comparison to the synthetic method without any water removal. This result confirms that reaction equilibrium was shifted in favour of the desired product and thermodynamic boundaries of the reaction were suppressed by using butylene oxide as a water scavenger. In order to obtain insight into the reaction network, the kinetic experiments were performed over commercial cerium oxide. On the basis of the selectivity/conversion profile it could be concluded that the one-pot synthesis of diethyl carbonate from ethanol, CO2 and butylene oxide occurs via a consecutive route involving cyclic carbonate as an intermediate. Since commercial cerium oxide suffers from the deactivation problems already after first reaction cycle, in-house CeO2 was prepared applying room temperature precipitation technique. Variation of the synthesis parameters such as synthesis time, calcination temperature and pH of the reaction solution turned to have considerable influence on the physico-chemical and catalytic properties of CeO2. The increase of the synthesis time resulted in high specific surface area of cerium oxide and catalyst prepared within 50 h exhibited the highest amount of basic sites on its surface. Furthermore, synthesis under pH 11 yielded cerium oxide with the highest specific surface area, 139 m2/g, among all prepared catalysts. Moreover, CeO2─pH11 catalyst demonstrated the best catalytic activity and 2 mmol of DEC was produced at 180 oC and 9 MPa of the final reaction pressure. In addition, ceria-supported onto high specific surface area silicas MCM-41, SBA-15 and silica gel were synthesized and tested for the first time as catalysts in the synthesis of DEC. Deposition of cerium oxide on MCM-41 and SiO2 supports resulted in a substantial increase of the alkalinity of the carrier materials. Hexagonal SBA-15 modified with 20 wt % of ceria exhibited the second highest basicity in the series of supported catalysts. Evaluation of the catalytic activity of ceria-supported catalysts showed that reaction carried out over 20 wt % CeO2-SBA-15 generated the highest amount of DEC.
Resumo:
Electrical machines have significant improvement potential. Nevertheless, the field is characterized by incremental innovations. Admittedly, steady improvement has been achieved, but no breakthrough development. Radical development in the field would require the introduction of new elements, such that may change the whole electrical machine industry system. Recent technological advancements in nanomaterials have opened up new horizons for the macroscopic application of carbon nanotube (CNT) fibres. With values of 100 MS/m measured on individual CNTs, CNT fibre materials hold promise for conductivities far beyond those of metals. Highly conductive, lightweight and strong CNT yarn is finally within reach; it could replace copper as a potentially better winding material. Although not yet providing low resistivity, the newest CNT yarn offers attractive perspectives for accelerated efficiency improvement of electrical machines. In this article, the potential for using new CNT materials to replace copper in machine windings is introduced. It does so, firstly, by describing the environment for a change that could revolutionize the industry and, secondly, by presenting the breakthrough results of a prototype construction. In the test motor, which is to our knowledge the first in its kind, the presently most electrically conductive carbon nanotube yarn replaces usual copper in the windings.
Resumo:
Lappeenranta University of Technology School of Technology Technical Physics Evgenii Zhukov MAGNETIZATION STUDIES OF POLYSTYRENE/MULTIWALL CARBON NANOTUBE COMPOSITE FILMS Master’s thesis 2015 55 pages, 41 pictures, 9 Tables. Examiners: Professor Erkki Lähderanta D.Sc. Ivan Zakharchuk Keywords: polystyrene, multi-walled carbon nanotubes, MWCNT, composite, magnetization, SQUID. In this thesis magnetic properties of polystyrene/multiwall carbon nanotube (MWCNT) composites are investigated with Quantum Design SQUID magnetometer (MPMS XL). The surface of the composite films is studied via BRUKER Multimode 8 Atomic Force Microscope, as well. The polystyrene/MWCNT composites have been prepared by the group of professor Okotrub (Physics Chemistry of Nanomaterials laboratory, Nikolaev Institute of Inorganic Chemistry, Russia). The composite films have been prepared by solution processing and stretching method. The approximate length and inner diameter of the MWCNTs used in fabrication are 260 μm and 10 nm, respectively. The content of MWCNTs is 1 and 2.5 contents percent (wt%) for studied samples. The stretching of the samples is 30% for samples with 1 and 2.5 wt% content, and one sample with 1 wt% loading of MWCNTs is 100% stretched. MWCNTs aligned perpendicular to a silicon substrate are used as a reference sample. The magnetization field dependencies of the samples exhibit hysteresis behavior. The values of saturation magnetization of composite films are much less compared to that of the reference sample. The saturation magnetization coercitivity field value drops with decrease of MWCNT content. At high magnetic fields strong presence of diamagnetism is observed. Measurements in magnetic field parallel and perpendicular to the composite plate display anisotropy with respect to the direction of stretching. Temperature dependences of magnetization for all samples display difference between zero-field cooled and field-cooled curves of magnetization. This divergence confirms the presence of magnetic interactions in the material. The atomic force microscopy study of the composites’ surfaces revealed that they are relatively smooth and the nanotubes are aligned with the axis of stretching to some extent.
Resumo:
The cоncept оf sustainability-оriented innоvatiоn is recent and still under researched. The aim оf the Thesis is tо cоntribute tо the field and investigate hоw dо cоmpanies оperating in Pоland apply sustainability-оriented innоvatiоn (SОI) tо their cоre business activities, what are the differences between variоus business fоrms оf оrganizatiоn in terms оf SОI, and what type оf capabilities facilitate implementatiоn оf SОI. Given early stage оf empirical research оn sustainability-оriented innоvatiоn, an explоratоry-descriptive case study research strategy was taken applying qualitative methоds. 6 interviews with managers and CEОs оf 4 cоmpanies lоcated in Warsaw were cоnducted. In additiоn, twо academic expert panels with specialists frоm University оf Lоdz and Lappeenranta University оf Technоlоgy were carried оut in оrder tо suppоrt the findings. The study fоund оut that in case оf cоmpanies which purpоse is tо create pоsitive impact and develоp sustainable prоducts оr services by using innоvative apprоaches, SОI activities are embedded in оrganizatiоnal culture and prоcess sо that it is difficult tо differentiate between main business activities and SОI. In the оther twо cases SОI practices were in line with cоre business activities thus reflected the main оperatiоns and were determined as a part оf CSR strategy. Activities are industry specific and are cоntingent upоn resоurces and capabilities pоssessed. Amоng list оf success factоrs management suppоrt, CEО’s persоnal values, dedicated and mоtivated team, investments in research and develоpment, оrganizatiоnal culture, nоn-hierarchical cоmmunicatiоns channels, empоwerment оf emplоyees, prоvisiоn оf time and space fоr failures were identified as key оrganizatiоnal capabilities facilitating integratiоn оf SОI practices. Whereas market demand, NGОs’ pressure, regulatiоns enfоrced, access tо external funding, netwоrking and cооperating present external оr cоllabоrative capabilities suppоrting implementatiоn оf sustainability оriented innоvatiоn in cоmpanies. SОI takes a systemic apprоach that drives the transfоrmatiоn tо becоme sustainable business embedding and integrating sоcial, envirоnmental and ecоnоmic value creatiоn tоgether.
Resumo:
Questions concerning perception are as old as the field of philosophy itself. Using the first-person perspective as a starting point and philosophical documents, the study examines the relationship between knowledge and perception. The problem is that of how one knows what one immediately perceives. The everyday belief that an object of perception is known to be a material object on grounds of perception is demonstrated as unreliable. It is possible that directly perceived sensible particulars are mind-internal images, shapes, sounds, touches, tastes and smells. According to the appearance/reality distinction, the world of perception is the apparent realm, not the real external world. However, the distinction does not necessarily refute the existence of the external world. We have a causal connection with the external world via mind-internal particulars, and therefore we have indirect knowledge about the external world through perceptual experience. The research especially concerns the reasons for George Berkeley’s claim that material things are mind-dependent ideas that really are perceived. The necessity of a perceiver’s own qualities for perceptual experience, such as mind, consciousness, and the brain, supports the causal theory of perception. Finally, it is asked why mind-internal entities are present when perceiving an object. Perception would not directly discern material objects without the presupposition of extra entities located between a perceiver and the external world. Nevertheless, the results show that perception is not sufficient to know what a perceptual object is, and that the existence of appearances is necessary to know that the external world is being perceived. However, the impossibility of matter does not follow from Berkeley’s theory. The main result of the research is that singular knowledge claims about the external world never refer directly and immediately to the objects of the external world. A perceiver’s own qualities affect how perceptual objects appear in a perceptual situation.
Resumo:
This thesis is done as a part of the NEOCARBON project. The aim of NEOCARBON project is to study a fully renewable energy system utilizing Power-to-Gas or Power-to-Liquid technology for energy storage. Power-to-Gas consists of two main operations: Hydrogen production via electrolysis and methane production via methanation. Methanation requires carbon dioxide and hydrogen as a raw material. This thesis studies the potential carbon dioxide sources within Finland. The different sources are ranked using the cost and energy penalty of the carbon capture, carbon biogenity and compatibility with Power-to-Gas. It can be concluded that in Finland there exists enough CO2 point sources to provide national PtG system with sufficient amounts of carbon. Pulp and paper industry is single largest producer of biogenic CO2 in Finland. It is possible to obtain single unit capable of grid balancing operations and energy transformations via Power-to-Gas and Gas-to-Power by coupling biogas plants with biomethanation and CHP units.
Resumo:
Industrial production of pulp and paper is an intensive consumer of energy, natural resources, and chemicals that result in a big carbon footprint of the final product. At present companies and industries aspire to calculate their gas emissions into the atmosphere in order to afterwards reduce atmospheric contamination. One of the approaches allowing to increase carbon burden from the pulp and paper manufacture is paper recycling. The general purpose of the current paper is to establish methods of quantifying and minimizing the carbon footprint of paper. The first target of this research is to derive a mathematical relationship between virgin fibre requirements with respect to the amount of recycled paper used in the pulp. One more purpose is to establish a model to be used to clarify the contribution of recycling and transportation to decreasing carbon dioxide emissions. For this study sensitivity analysis is used to investigate the robustness of obtained results. The results of the present study show that an increasing of recycling rate does not always lead to minimizing the carbon footprint. Additionally, we derived that transportation of waste paper throughout distances longer than 5800 km has no sense because the use of that paper will only increase carbon dioxide emissions and it is better to reject recycling at all. Finally, we designed the model for organization of a new supply chain of paper product to a customer. The models were implemented as reusable MATLAB frameworks.
Resumo:
The aim of this thesis research work focused on the carbonate precipitation of magnesium using magnesium hydroxide Mg(OH)2 and carbon dioxide (CO2) gas at ambient temperature and pressure. The rate of dissolution of Mg(OH)2 and precipitation kinetics were investigated under different operating conditions. The conductivity and pH of the solution were inline monitored by a Consort meter and the solid samples gotten from the precipitation reaction were analysed by a laser diffraction analyzer Malvern Mastersizer to obtain particle size distributions (PSD) of crystal samples. Also the Mg2+ concentration profiles were determined from the liquid phase of the precipitate by ion chromatography (IC) analysis. Crystal morphology of the obtained precipitates were also investigated and discussed in this work. For the carbonation reaction of magnesium hydroxide in the present work, it was found that magnesium carbonate trihydrate (nesquehonite) was the main product and its formation occurred at a pH of around 7-8. The stirrer speed has a significant effect on the dissolution rate of Mg(OH)2. The highest obtained Mg2+ concentration level was 0.424 mol L-l for the 470 rpm and 0.387 mol L-1 for the 560 rpm which corresponded to the processing time of 45 mins and 40 mins respectively. The particle size distribution shows that the average particle size keeps increasing during the reaction as the CO2 is been fed to the system. The carbonation process is kinetically favored and simple as nesquehonite formation occurs in a very short time. It is a thermodynamically and chemically stable solid product, which allows for a long-term storage of CO2. Since the carbonation reaction is a complex system which includes dissolution of magnesium hydroxide particles, absorption of CO2, chemical reaction and crystallization, the dissolution of magnesium hydroxide was studied in hydrochloric acid (HCl) solvent with and without nitrogen (N2) inert gas. It was found on the dissolution part that the impeller speed had effect on the dissolution rate. The higher the impeller speed the higher the pH of the solution, although for the highest speed of 650rpm it was not the case. Therefore, it was concluded that the optimum speed of the stirrer was 560rpm. The influence of inert gas N2 on the dissolution rate of Mg(OH)2 particles could be seen based on measured pH, electric conductivity and Mg2+ concentration curves.