107 resultados para Conceptual modelling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is devoted to the analysis of signal variation of the Cross-Direction and Machine-Direction measurements from paper web. The data that we possess comes from the real paper machine. Goal of the work is to reconstruct the basis weight structure of the paper and to predict its behaviour to the future. The resulting synthetic data is needed for simulation of paper web. The main idea that we used for describing the basis weight variation in the Cross-Direction is Empirical Orthogonal Functions (EOF) algorithm, which is closely related to Principal Component Analysis (PCA) method. Signal forecasting in time is based on Time-Series analysis. Two principal mathematical procedures that we used in the work are Autoregressive-Moving Average (ARMA) modelling and Ornstein–Uhlenbeck (OU) process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a three-dimensional, semi-empirical, steady state model for simulating the combustion, gasification, and formation of emissions in circulating fluidized bed (CFB) processes. In a large-scale CFB furnace, the local feeding of fuel, air, and other input materials, as well as the limited mixing rate of different reactants produce inhomogeneous process conditions. To simulate the real conditions, the furnace should be modelled three-dimensionally or the three-dimensional effects should be taken into account. The only available methods for simulating the large CFB furnaces three-dimensionally are semi-empirical models, which apply a relatively coarse calculation mesh and a combination of fundamental conservation equations, theoretical models and empirical correlations. The number of such models is extremely small. The main objective of this work was to achieve a model which can be applied to calculating industrial scale CFB boilers and which can simulate all the essential sub-phenomena: fluid dynamics, reactions, the attrition of particles, and heat transfer. The core of the work was to develop the model frame and the required sub-models for determining the combustion and sorbent reactions. The objective was reached, and the developed model was successfully used for studying various industrial scale CFB boilers combusting different types of fuel. The model for sorbent reactions, which includes the main reactions for calcitic limestones, was applied for studying the new possible phenomena occurring in the oxygen-fired combustion. The presented combustion and sorbent models and principles can be utilized in other model approaches as well, including other empirical and semi-empirical model approaches, and CFD based simulations. The main achievement is the overall model frame which can be utilized for the further development and testing of new sub-models and theories, and for concentrating the knowledge gathered from the experimental work carried out at bench scale, pilot scale and industrial scale apparatus, and from the computational work performed by other modelling methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The condensation rate has to be high in the safety pressure suppression pool systems of Boiling Water Reactors (BWR) in order to fulfill their safety function. The phenomena due to such a high direct contact condensation (DCC) rate turn out to be very challenging to be analysed either with experiments or numerical simulations. In this thesis, the suppression pool experiments carried out in the POOLEX facility of Lappeenranta University of Technology were simulated. Two different condensation modes were modelled by using the 2-phase CFD codes NEPTUNE CFD and TransAT. The DCC models applied were the typical ones to be used for separated flows in channels, and their applicability to the rapidly condensing flow in the condensation pool context had not been tested earlier. A low Reynolds number case was the first to be simulated. The POOLEX experiment STB-31 was operated near the conditions between the ’quasi-steady oscillatory interface condensation’ mode and the ’condensation within the blowdown pipe’ mode. The condensation models of Lakehal et al. and Coste & Lavi´eville predicted the condensation rate quite accurately, while the other tested ones overestimated it. It was possible to get the direct phase change solution to settle near to the measured values, but a very high resolution of calculation grid was needed. Secondly, a high Reynolds number case corresponding to the ’chugging’ mode was simulated. The POOLEX experiment STB-28 was chosen, because various standard and highspeed video samples of bubbles were recorded during it. In order to extract numerical information from the video material, a pattern recognition procedure was programmed. The bubble size distributions and the frequencies of chugging were calculated with this procedure. With the statistical data of the bubble sizes and temporal data of the bubble/jet appearance, it was possible to compare the condensation rates between the experiment and the CFD simulations. In the chugging simulations, a spherically curvilinear calculation grid at the blowdown pipe exit improved the convergence and decreased the required cell count. The compressible flow solver with complete steam-tables was beneficial for the numerical success of the simulations. The Hughes-Duffey model and, to some extent, the Coste & Lavi´eville model produced realistic chugging behavior. The initial level of the steam/water interface was an important factor to determine the initiation of the chugging. If the interface was initialized with a water level high enough inside the blowdown pipe, the vigorous penetration of a water plug into the pool created a turbulent wake which invoked the chugging that was self-sustaining. A 3D simulation with a suitable DCC model produced qualitatively very realistic shapes of the chugging bubbles and jets. The comparative FFT analysis of the bubble size data and the pool bottom pressure data gave useful information to distinguish the eigenmodes of chugging, bubbling, and pool structure oscillations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Filtration is a widely used unit operation in chemical engineering. The huge variation in the properties of materials to be ltered makes the study of ltration a challenging task. One of the objectives of this thesis was to show that conventional ltration theories are di cult to use when the system to be modelled contains all of the stages and features that are present in a complete solid/liquid separation process. Furthermore, most of the ltration theories require experimental work to be performed in order to obtain critical parameters required by the theoretical models. Creating a good overall understanding of how the variables a ect the nal product in ltration is somewhat impossible on a purely theoretical basis. The complexity of solid/liquid separation processes require experimental work and when tests are needed, it is advisable to use experimental design techniques so that the goals can be achieved. The statistical design of experiments provides the necessary tools for recognising the e ects of variables. It also helps to perform experimental work more economically. Design of experiments is a prerequisite for creating empirical models that can describe how the measured response is related to the changes in the values of the variable. A software package was developed that provides a ltration practitioner with experimental designs and calculates the parameters for linear regression models, along with the graphical representation of the responses. The developed software consists of two software modules. These modules are LTDoE and LTRead. The LTDoE module is used to create experimental designs for di erent lter types. The lter types considered in the software are automatic vertical pressure lter, double-sided vertical pressure lter, horizontal membrane lter press, vacuum belt lter and ceramic capillary action disc lter. It is also possible to create experimental designs for those cases where the variables are totally user de ned, say for a customized ltration cycle or di erent piece of equipment. The LTRead-module is used to read the experimental data gathered from the experiments, to analyse the data and to create models for each of the measured responses. Introducing the structure of the software more in detail and showing some of the practical applications is the main part of this thesis. This approach to the study of cake ltration processes, as presented in this thesis, has been shown to have good practical value when making ltration tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this master’s thesis is to investigate the loss behavior of three-level ANPC inverter and compare it with conventional NPC inverter. The both inverters are controlled with mature space vector modulation strategy. In order to provide the comparison both accurate and detailed enough NPC and ANPC simulation models should be obtained. The similar control model of SVM is utilized for both NPC and ANPC inverter models. The principles of control algorithms, the structure and description of models are clarified. The power loss calculation model is based on practical calculation approaches with certain assumptions. The comparison between NPC and ANPC topologies is presented based on results obtained for each semiconductor device, their switching and conduction losses and efficiency of the inverters. Alternative switching states of ANPC topology allow distributing losses among the switches more evenly, than in NPC inverter. Obviously, the losses of a switching device depend on its position in the topology. Losses distribution among the components in ANPC topology allows reducing the stress on certain switches, thus losses are equally distributed among the semiconductors, however the efficiency of the inverters is the same. As a new contribution to earlier studies, the obtained models of SVM control, NPC and ANPC inverters have been built. Thus, this thesis can be used in further more complicated modelling of full-power converters for modern multi-megawatt wind energy conversion systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change has given an impetus to research and developed new technologies to reduce significantly carbon dioxide emissions in energy production in the developed countries. The major pollution source, fossil fuels, will be used as an energy source for many decades, which provides the demand for carbon capture and storage technologies. Over recent years many new technologies has been developed and one of the most promising is calcium-looping in post-combustion carbon capture process, which use carbonation-calcination cycle to capture carbon dioxide from the flue gas of a combustion process. First pilot plant for calcium-looping process has been built in Oviedo, Spain. In this study, a three-dimensional model has been created for the calciner, which is one of the two fluidized bed reactors needed for the process. The calciner is a regenerator where the captured carbon dioxide is removed from the calcium material and then collected after the reactor. Thesis concentrates in creating the calciner 3D-model frame with CFB3D-program and testing the model with two different example cases. Used input parameters and calciner geometry are Oviedo pilot plant design parameters. The calculation results give information about the process and show that pilot plant calciner should perform as planned. This Master’s Thesis is done in participation to EU FP7 project CaOling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic structure of ZrO2 and B2O3 was investigated in this work. New data under extreme conditions (T = 3100 K) was obtained for the liquid ZrO2 structure. A fractional number of boron was investigated for glassy structure of B2O3. It was shown that it is possible to obtain an agreement for the fractional number between NMR and DFT techniques using a suitable initial configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this master's thesis was to develop a process to increase the value of residual fungal biomass as an animal feed. The increase in value is achieved by enriching the protein content in the biomass and potentially isolating other valuable fractions for productisation. In the literature part of this thesis the composition of fungal biomass and fungal cell wall and the factors affecting them during cultivation are presented. The possible processing options are also presented and evaluated. The soy protein and single cell protein product manufacturing processes are used as examples due to the lack of fungal biomass fractionation processes found in published literature. The second part of this thesis was performed by making laboratory experiments on the developed process, which consisted of acid hydrolysis with subsequent ethanol extraction. Chitin was precipitated from the acid hydrolysate filtrate. The experiments were conducted with three different hydrolysis temperatures and three different acid concentrations. The optimal hydrolysis conditions were 60 °C with 10 %-vol acid concentration. Optimal conditions in hydrolysis resulted in 30 % increase in protein content in the final biomass. The conceptual process was modelled to scale of 10 000 t/a biomass feed. The mass and energy balances were based on the laboratory experiments. Economic calculations were performed to determine the maximal capital expense while achieving 10 % internal rate of return for the investment. For the basic case the capital expense threshold was 25.8 M€. Four optional cases and parameter sensitivity analysis were performed to determine the effects of changes in the process. The chitin sales had the greatest impact of the individual parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational model-based simulation methods were developed for the modelling of bioaffinity assays. Bioaffinity-based methods are widely used to quantify a biological substance in biological research, development and in routine clinical in vitro diagnostics. Bioaffinity assays are based on the high affinity and structural specificity between the binding biomolecules. The simulation methods developed are based on the mechanistic assay model, which relies on the chemical reaction kinetics and describes the forming of a bound component as a function of time from the initial binding interaction. The simulation methods were focused on studying the behaviour and the reliability of bioaffinity assay and the possibilities the modelling methods of binding reaction kinetics provide, such as predicting assay results even before the binding reaction has reached equilibrium. For example, a rapid quantitative result from a clinical bioaffinity assay sample can be very significant, e.g. even the smallest elevation of a heart muscle marker reveals a cardiac injury. The simulation methods were used to identify critical error factors in rapid bioaffinity assays. A new kinetic calibration method was developed to calibrate a measurement system by kinetic measurement data utilizing only one standard concentration. A nodebased method was developed to model multi-component binding reactions, which have been a challenge to traditional numerical methods. The node-method was also used to model protein adsorption as an example of nonspecific binding of biomolecules. These methods have been compared with the experimental data from practice and can be utilized in in vitro diagnostics, drug discovery and in medical imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Filtration is a widely used unit operation in chemical engineering. The huge variation in the properties of materials to be ltered makes the study of ltration a challenging task. One of the objectives of this thesis was to show that conventional ltration theories are di cult to use when the system to be modelled contains all of the stages and features that are present in a complete solid/liquid separation process. Furthermore, most of the ltration theories require experimental work to be performed in order to obtain critical parameters required by the theoretical models. Creating a good overall understanding of how the variables a ect the nal product in ltration is somewhat impossible on a purely theoretical basis. The complexity of solid/liquid separation processes require experimental work and when tests are needed, it is advisable to use experimental design techniques so that the goals can be achieved. The statistical design of experiments provides the necessary tools for recognising the e ects of variables. It also helps to perform experimental work more economically. Design of experiments is a prerequisite for creating empirical models that can describe how the measured response is related to the changes in the values of the variable. A software package was developed that provides a ltration practitioner with experimental designs and calculates the parameters for linear regression models, along with the graphical representation of the responses. The developed software consists of two software modules. These modules are LTDoE and LTRead. The LTDoE module is used to create experimental designs for di erent lter types. The lter types considered in the software are automatic vertical pressure lter, double-sided vertical pressure lter, horizontal membrane lter press, vacuum belt lter and ceramic capillary action disc lter. It is also possible to create experimental designs for those cases where the variables are totally user de ned, say for a customized ltration cycle or di erent piece of equipment. The LTRead-module is used to read the experimental data gathered from the experiments, to analyse the data and to create models for each of the measured responses. Introducing the structure of the software more in detail and showing some of the practical applications is the main part of this thesis. This approach to the study of cake ltration processes, as presented in this thesis, has been shown to have good practical value when making ltration tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bioavailability of metals and their potential for environmental pollution depends not simply on total concentrations, but is to a great extent determined by their chemical form. Consequently, knowledge of aqueous metal species is essential in investigating potential metal toxicity and mobility. The overall aim of this thesis is, thus, to determine the species of major and trace elements and the size distribution among the different forms (e.g. ions, molecules and mineral particles) in selected metal-enriched Boreal river and estuarine systems by utilising filtration techniques and geochemical modelling. On the basis of the spatial physicochemical patterns found, the fractionation and complexation processes of elements (mainly related to input of humic matter and pH-change) were examined. Dissolved (<1 kDa), colloidal (1 kDa-0.45 μm) and particulate (>0.45 μm) size fractions of sulfate, organic carbon (OC) and 44 metals/metalloids were investigated in the extremely acidic Vörå River system and its estuary in W Finland, and in four river systems in SW Finland (Sirppujoki, Laajoki, Mynäjoki and Paimionjoki), largely affected by soil erosion and acid sulfate (AS) soils. In addition, geochemical modelling was used to predict the formation of free ions and complexes in these investigated waters. One of the most important findings of this study is that the very large amounts of metals known to be released from AS soils (including Al, Ca, Cd, Co, Cu, Mg, Mn, Na, Ni, Si, U and the lanthanoids) occur and can prevail mainly in toxic forms throughout acidic river systems; as free ions and/or sulfate-complexes. This has serious effects on the biota and especially dissolved Al is expected to have acute effects on fish and other organisms, but also other potentially toxic dissolved elements (e.g. Cd, Cu, Mn and Ni) can have fatal effects on the biota in these environments. In upstream areas that are generally relatively forested (higher pH and contents of OC) fewer bioavailable elements (including Al, Cu, Ni and U) may be found due to complexation with the more abundantly occurring colloidal OC. In the rivers in SW Finland total metal concentrations were relatively high, but most of the elements occurred largely in a colloidal or particulate form and even elements expected to be very soluble (Ca, K, Mg, Na and Sr) occurred to a large extent in colloidal form. According to geochemical modelling, these patterns may only to a limited extent be explained by in-stream metal complexation/adsorption. Instead there were strong indications that the high metal concentrations and dominant solid fractions were largely caused by erosion of metal bearing phyllosilicates. A strong influence of AS soils, known to exist in the catchment, could be clearly distinguished in the Sirppujoki River as it had very high concentrations of a metal sequence typical of AS soils in a dissolved form (Ba, Br, Ca, Cd, Co, K, Mg, Mn, Na, Ni, Rb and Sr). In the Paimionjoki River, metal concentrations (including Ba, Cs, Fe, Hf, Pb, Rb, Si, Th, Ti, Tl and V; not typical of AS soils in the area) were high, but it was found that the main cause of this was erosion of metal bearing phyllosilicates and thus these metals occurred dominantly in less toxic colloidal and particulate fractions. In the two nearby rivers (Laajoki and Mynäjoki) there was influence of AS soils, but it was largely masked by eroded phyllosilicates. Consequently, rivers draining clay plains sensitive to erosion, like those in SW Finland, have generally high background metal concentrations due to erosion. Thus, relying on only semi-dissolved (<0.45 μm) concentrations obtained in routine monitoring, or geochemical modelling based on such data, can lead to a great overestimation of the water toxicity in this environment. The potentially toxic elements that are of concern in AS soil areas will ultimately be precipitated in the recipient estuary or sea, where the acidic metalrich river water will gradually be diluted/neutralised with brackish seawater. Along such a rising pH gradient Al, Cu and U will precipitate first together with organic matter closest to the river mouth. Manganese is relatively persistent in solution and, thus, precipitates further down the estuary as Mn oxides together with elements such as Ba, Cd, Co, Cu and Ni. Iron oxides, on the contrary, are not important scavengers of metals in the estuary, they are predicted to be associated only with As and PO4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper is devoted to study specific aspects of heat transfer in the combustion chamber of compression ignited reciprocating internal combustion engines and possibility to directly measure the heat flux by means of Gradient Heat Flux Sensors (GHFS). A one – dimensional single zone model proposed by Kyung Tae Yun et al. and implemented with the aid of Matlab, was used to obtain approximate picture of heat flux behavior in the combustion chamber with relation to the crank angle. The model’s numerical output was compared to the experimental results. The experiment was accomplished by A. Mityakov at four stroke diesel engine Indenor XL4D. Local heat fluxes on the surface of cylinder head were measured with fast – response, high – sensitive GHFS. The comparison of numerical data with experimental results has revealed a small deviation in obtained heat flux values throughout the cycle and different behavior of heat flux curve after Top Dead Center.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potentiometric ion sensors are a very important subgroup of electrochemical sensors, very attractive for practical applications due to their small size, portability, low-energy consumption, relatively low cost and not changing the sample composition. They are investigated by the researchers from many fields of science. The continuous development of this field creates the necessity for a detailed description of sensor response and the electrochemical processes important in the practical applications of ion sensors. The aim of this thesis is to present the existing models available for the description of potentiometric ion sensors as well as their applicability and limitations. This includes the description of the diffusion potential occurring at the reference electrodes. The wide range of existing models, from most idealised phase boundary models to most general models, including migration, is discussed. This work concentrates on the advanced modelling of ion sensors, namely the Nernst-Planck-Poisson (NPP) model, which is the most general of the presented models, therefore the most widely applicable. It allows the modelling of the transport processes occurring in ion sensors and generating the potentiometric response. Details of the solution of the NPP model (including the numerical methods used) are shown. The comparisons between NPP and the more idealized models are presented. The applicability of the model to describe the formation of diffusion potential in reference electrode, the lower detection limit of both ion-exchanger and neutral carrier electrodes and the effect of the complexation in the membrane are discussed. The model was applied for the description of both types of electrodes, i.e. with the inner filling solution and solidcontact electrodes. The NPP model allows the electrochemical methods other than potentiometry to be described. Application of this model in Electrochemical Impedance Spectroscopy is discussed and a possible use in chrono-potentiometry is indicated. By combining the NPP model with evolutionary algorithms, namely Hierarchical Genetic Strategy (HGS), a novel method allowing the facilitation of the design of ion sensors was created. It is described in detail in this thesis and its possible applications in the field of ion sensors are indicated. Finally, some interesting effects occurring in the ion sensors (i.e. overshot response and influence of anionic sites) as well as the possible applications of NPP in biochemistry are described.