107 resultados para Biometano, Smart Grid Gas, AEEG


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents an approach for formulating and validating a space averaged drag model for coarse mesh simulations of gas-solid flows in fluidized beds using the two-fluid model. Proper modeling for fluid dynamics is central in understanding any industrial multiphase flow. The gas-solid flows in fluidized beds are heterogeneous and usually simulated with the Eulerian description of phases. Such a description requires the usage of fine meshes and small time steps for the proper prediction of its hydrodynamics. Such constraint on the mesh and time step size results in a large number of control volumes and long computational times which are unaffordable for simulations of large scale fluidized beds. If proper closure models are not included, coarse mesh simulations for fluidized beds do not give reasonable results. The coarse mesh simulation fails to resolve the mesoscale structures and results in uniform solids concentration profiles. For a circulating fluidized bed riser, such predicted profiles result in a higher drag force between the gas and solid phase and also overestimated solids mass flux at the outlet. Thus, there is a need to formulate the closure correlations which can accurately predict the hydrodynamics using coarse meshes. This thesis uses the space averaging modeling approach in the formulation of closure models for coarse mesh simulations of the gas-solid flow in fluidized beds using Geldart group B particles. In the analysis of formulating the closure correlation for space averaged drag model, the main parameters for the modeling were found to be the averaging size, solid volume fraction, and distance from the wall. The closure model for the gas-solid drag force was formulated and validated for coarse mesh simulations of the riser, which showed the verification of this modeling approach. Coarse mesh simulations using the corrected drag model resulted in lowered values of solids mass flux. Such an approach is a promising tool in the formulation of appropriate closure models which can be used in coarse mesh simulations of large scale fluidized beds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technological developments in microprocessors and ICT landscape have made a shift to a new era where computing power is embedded in numerous small distributed objects and devices in our everyday lives. These small computing devices are ne-tuned to perform a particular task and are increasingly reaching our society at every level. For example, home appliances such as programmable washing machines, microwave ovens etc., employ several sensors to improve performance and convenience. Similarly, cars have on-board computers that use information from many di erent sensors to control things such as fuel injectors, spark plug etc., to perform their tasks e ciently. These individual devices make life easy by helping in taking decisions and removing the burden from their users. All these objects and devices obtain some piece of information about the physical environment. Each of these devices is an island with no proper connectivity and information sharing between each other. Sharing of information between these heterogeneous devices could enable a whole new universe of innovative and intelligent applications. The information sharing between the devices is a diffcult task due to the heterogeneity and interoperability of devices. Smart Space vision is to overcome these issues of heterogeneity and interoperability so that the devices can understand each other and utilize services of each other by information sharing. This enables innovative local mashup applications based on shared data between heterogeneous devices. Smart homes are one such example of Smart Spaces which facilitate to bring the health care system to the patient, by intelligent interconnection of resources and their collective behavior, as opposed to bringing the patient into the health system. In addition, the use of mobile handheld devices has risen at a tremendous rate during the last few years and they have become an essential part of everyday life. Mobile phones o er a wide range of different services to their users including text and multimedia messages, Internet, audio, video, email applications and most recently TV services. The interactive TV provides a variety of applications for the viewers. The combination of interactive TV and the Smart Spaces could give innovative applications that are personalized, context-aware, ubiquitous and intelligent by enabling heterogeneous systems to collaborate each other by sharing information between them. There are many challenges in designing the frameworks and application development tools for rapid and easy development of these applications. The research work presented in this thesis addresses these issues. The original publications presented in the second part of this thesis propose architectures and methodologies for interactive and context-aware applications, and tools for the development of these applications. We demonstrated the suitability of our ontology-driven application development tools and rule basedapproach for the development of dynamic, context-aware ubiquitous iTV applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forest biomass represents a geographically distributed feedstock, and geographical location affects the greenhouse gas (GHG) performance of a given forest-bioenergy system in several ways. For example, biomass availability, forest operations, transportation possibilities and the distances involved, biomass end-use possibilities, fossil reference systems, and forest carbon balances all depend to some extent on location. The overall objective of this thesis was to assess the GHG emissions derived from supply and energy-utilization chains of forest biomass in Finland, with a specific focus on the effect of location in relation to forest biomass’s availability and the transportation possibilities. Biomass availability and transportation-network assessments were conducted through utilization of geographical information system methods, and the GHG emissions were assessed by means of lifecycle assessment. The thesis is based on four papers in which forest biomass supply on industrial scale was assessed. The feedstocks assessed in this thesis include harvesting residues, smalldiameter energy wood and stumps. The principal implication of the findings in this thesis is that in Finland, the location and availability of biomass in the proximity of a given energyutilization or energy-conversion plant is not a decisive factor in supply-chain GHG emissions or the possible GHG savings to be achieved with forest-biomass energy use. Therefore, for the greatest GHG reductions with limited forest-biomass resources, energy utilization of forest biomass in Finland should be directed to the locations where most GHG savings are achieved through replacement of fossil fuels. Furthermore, one should prioritize the types of forest biomass with the lowest direct supply-chain GHG emissions (e.g., from transport and comminution) and the lowest indirect ones (in particular, soil carbon-stock losses), regardless of location. In this respect, the best combination is to use harvesting residues in combined heat and power production, replacing peat or coal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The European Organization for Nuclear Research (CERN) operates the largest particle collider in the world. This particle collider is called the Large Hadron Collider (LHC) and it will undergo a maintenance break sometime in 2017 or 2018. During the break, the particle detectors, which operate around the particle collider, will be serviced and upgraded. Following the improvement in performance of the particle collider, the requirements for the detector electronics will be more demanding. In particular, the high amount of radiation during the operation of the particle collider sets requirements for the electronics that are uncommon in commercial electronics. Electronics that are built to function in the challenging environment of the collider have been designed at CERN. In order to meet the future challenges of data transmission, a GigaBit Transceiver data transmission module and an E-Link data bus have been developed. The next generation of readout electronics is designed to benefit from these technologies. However, the current readout electronics chips are not compatible with these technologies. As a result, in addition to new Gas Electron Multiplier (GEM) detectors and other technology, a new compatible chip is developed to function within the GEMs for the Compact Muon Solenoid (CMS) project. In this thesis, the objective was to study a data transmission interface that will be located on the readout chip between the E-Link bus and the control logic of the chip. The function of the module is to handle data transmission between the chip and the E-Link. In the study, a model of the interface was implemented with the Verilog hardware description language. This process was simulated by using chip design software by Cadence. State machines and operating principles with alternative possibilities for implementation are introduced in the E-Link interface design procedure. The functionality of the designed logic is demonstrated in simulation results, in which the implemented model is proven to be suitable for its task. Finally, suggestions that should be considered for improving the design have been presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fireside deposits can be found in many types of utility and industrial furnaces. The deposits in furnaces are problematic because they can reduce heat transfer, block gas paths and cause corrosion. To tackle these problems, it is vital to estimate the influence of deposits on heat transfer, to minimize deposit formation and to optimize deposit removal. It is beneficial to have a good understanding of the mechanisms of fireside deposit formation. Numerical modeling is a powerful tool for investigating the heat transfer in furnaces, and it can provide valuable information for understanding the mechanisms of deposit formation. In addition, a sub-model of deposit formation is generally an essential part of a comprehensive furnace model. This work investigates two specific processes of fireside deposit formation in two industrial furnaces. The first process is the slagging wall found in furnaces with molten deposits running on the wall. A slagging wall model is developed to take into account the two-layer structure of the deposits. With the slagging wall model, the thickness and the surface temperature of the molten deposit layer can be calculated. The slagging wall model is used to predict the surface temperature and the heat transfer to a specific section of a super-heater tube panel with the boundary condition obtained from a Kraft recovery furnace model. The slagging wall model is also incorporated into the computational fluid dynamics (CFD)-based Kraft recovery furnace model and applied on the lower furnace walls. The implementation of the slagging wall model includes a grid simplification scheme. The wall surface temperature calculated with the slagging wall model is used as the heat transfer boundary condition. Simulation of a Kraft recovery furnace is performed, and it is compared with two other cases and measurements. In the two other cases, a uniform wall surface temperature and a wall surface temperature calculated with a char bed burning model are used as the heat transfer boundary conditions. In this particular furnace, the wall surface temperatures from the three cases are similar and are in the correct range of the measurements. Nevertheless, the wall surface temperature profiles with the slagging wall model and the char bed burning model are different because the deposits are represented differently in the two models. In addition, the slagging wall model is proven to be computationally efficient. The second process is deposit formation due to thermophoresis of fine particles to the heat transfer surface. This process is considered in the simulation of a heat recovery boiler of the flash smelting process. In order to determine if the small dust particles stay on the wall, a criterion based on the analysis of forces acting on the particle is applied. Time-dependent simulation of deposit formation in the heat recovery boiler is carried out and the influence of deposits on heat transfer is investigated. The locations prone to deposit formation are also identified in the heat recovery boiler. Modeling of the two processes in the two industrial furnaces enhances the overall understanding of the processes. The sub-models developed in this work can be applied in other similar deposit formation processes with carefully-defined boundary conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The iron ore pelletizing process consumes high amounts of energy, including nonrenewable sources, such as natural gas. Due to fossil fuels scarcity and increasing concerns regarding sustainability and global warming, at least partial substitution by renewable energy seems inevitable. Gasification projects are being successfully developed in Northern Europe, and large-scale circulating fluidized bed biomass gasifiers have been commissioned in e.g. Finland. As Brazil has abundant biomass resources, biomass gasification is a promising technology in the near future. Biomasses can be converted into product gas through gasification. This work compares different technologies, e.g. air, oxygen and steam gasification, focusing on the use of the product gas in the indurating machine. The use of biosynthetic natural gas is also evaluated. Main parameters utilized to assess the suitability of product gas were adiabatic flame temperature and volumetric flow rate. It was found that low energy content product gas could be utilized in the traveling grate, but it would require burner’s to be changed. On the other hand, bio-SGN could be utilized without any adaptions. Economical assessment showed that all gasification plants are feasible for sizes greater than 60 MW. Bio-SNG production is still more expensive than natural gas in any case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More discussion is required on how and which types of biomass should be used to achieve a significant reduction in the carbon load released into the atmosphere in the short term. The energy sector is one of the largest greenhouse gas (GHG) emitters and thus its role in climate change mitigation is important. Replacing fossil fuels with biomass has been a simple way to reduce carbon emissions because the carbon bonded to biomass is considered as carbon neutral. With this in mind, this thesis has the following objectives: (1) to study the significance of the different GHG emission sources related to energy production from peat and biomass, (2) to explore opportunities to develop more climate friendly biomass energy options and (3) to discuss the importance of biogenic emissions of biomass systems. The discussion on biogenic carbon and other GHG emissions comprises four case studies of which two consider peat utilization, one forest biomass and one cultivated biomasses. Various different biomass types (peat, pine logs and forest residues, palm oil, rapeseed oil and jatropha oil) are used as examples to demonstrate the importance of biogenic carbon to life cycle GHG emissions. The biogenic carbon emissions of biomass are defined as the difference in the carbon stock between the utilization and the non-utilization scenarios of biomass. Forestry-drained peatlands were studied by using the high emission values of the peatland types in question to discuss the emission reduction potential of the peatlands. The results are presented in terms of global warming potential (GWP) values. Based on the results, the climate impact of the peat production can be reduced by selecting high-emission-level peatlands for peat production. The comparison of the two different types of forest biomass in integrated ethanol production in pulp mill shows that the type of forest biomass impacts the biogenic carbon emissions of biofuel production. The assessment of cultivated biomasses demonstrates that several selections made in the production chain significantly affect the GHG emissions of biofuels. The emissions caused by biofuel can exceed the emissions from fossil-based fuels in the short term if biomass is in part consumed in the process itself and does not end up in the final product. Including biogenic carbon and other land use carbon emissions into the carbon footprint calculations of biofuel reveals the importance of the time frame and of the efficiency of biomass carbon content utilization. As regards the climate impact of biomass energy use, the net impact on carbon stocks (in organic matter of soils and biomass), compared to the impact of the replaced energy source, is the key issue. Promoting renewable biomass regardless of biogenic GHG emissions can increase GHG emissions in the short term and also possibly in the long term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The number of electric vehicles grows continuously and the implementation of charging electric vehicles is an important issue for the future. Increasing amount of electric vehicles can cause problems to distribution grid by increasing peak load. Currently charging of electric vehicles is uncontrolled, but as the amount of electric vehicles grows, smart charg-ing (controlled charging) will be one possible solution to handle this situation. In this thesis smart charging of electric vehicles is examined from electricity retailers` point of view. The purpose is to find out plausible saving potentials of smart charging, when it´s controlled by price signal. Saving potential is calculated by comparing costs of price signal controlled charging and uncontrolled charging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global warming is assertively the greatest environmental challenge for humans of 21st century. It is primarily caused by the anthropogenic greenhouse gas (GHG) that trap heat in the atmosphere. Because of which, the GHG emission mitigation, globally, is a critical issue in the political agenda of all high-profile nations. India, like other developing countries, is facing this threat of climate change while dealing with the challenge of sustaining its rapid economic growth. India’s economy is closely connected to its natural resource base and climate sensitive sectors like water, agriculture and forestry. Due to Climate change the quality and distribution of India’s natural resources may transform and lead to adverse effects on livelihood of its people. Therefore, India is expected to face a major threat due to the projected climate change. This study proposes possible solutions for GHG emission mitigation that are specific to the power sector of India. The methods discussed here will take Indian power sector from present coal dominant ideology to a system, centered with renewable energy sources. The study further proposes a future scenario for 2050, based on the present Indian government policies and global energy technologies advancements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas shielding plays an important role in laser welding phenomena. This is because it does not only provide shielding against oxidization but it has an effect in beam absorption and thus welds penetration. The goal of this thesis is to study and compare the effects of different shielding gas feeding methods in laser welding of steel. Research method is a literature survey. It is found that the inclination angle and the arrangement of the gas feeding nozzles affect the phenomena significantly. It is suggested that by designing shielding gas feeding case specifically better welding results can be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen stratification and atmosphere mixing is a very important phenomenon in nuclear reactor containments when severe accidents are studied and simulated. Hydrogen generation, distribution and accumulation in certain parts of containment may pose a great risk to pressure increase induced by hydrogen combustion, and thus, challenge the integrity of NPP containment. The accurate prediction of hydrogen distribution is important with respect to the safety design of a NPP. Modelling methods typically used for containment analyses include both lumped parameter and field codes. The lumped parameter method is universally used in the containment codes, because its versatility, flexibility and simplicity. The lumped parameter method allows fast, full-scale simulations, where different containment geometries with relevant engineering safety features can be modelled. Lumped parameter gas stratification and mixing modelling methods are presented and discussed in this master’s thesis. Experimental research is widely used in containment analyses. The HM-2 experiment related to hydrogen stratification and mixing conducted at the THAI facility in Germany is calculated with the APROS lump parameter containment package and the APROS 6-equation thermal hydraulic model. The main purpose was to study, whether the convection term included in the momentum conservation equation of the 6-equation modelling gives some remarkable advantages compared to the simplified lumped parameter approach. Finally, a simple containment test case (high steam release to a narrow steam generator room inside a large dry containment) was calculated with both APROS models. In this case, the aim was to determine the extreme containment conditions, where the effect of convection term was supposed to be possibly high. Calculation results showed that both the APROS containment and the 6-equation model could model the hydrogen stratification in the THAI test well, if the vertical nodalisation was dense enough. However, in more complicated cases, the numerical diffusion may distort the results. Calculation of light gas stratification could be probably improved by applying the second order discretisation scheme for the modelling of gas flows. If the gas flows are relatively high, the convection term of the momentum equation is necessary to model the pressure differences between the adjacent nodes reasonably.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Actually, the term innovation seems to be one of the most used in any kind of business practices. However, in order to get value from it, companies need to define a systematic and structured way to manage innovation. This process can be difficult and very risky since it is associated with the development of firm´s capabilities which involves human and technical challenges according to the context of a firm. Additionally, it seems not to exist a magic formula to manage innovation and what may work in a company may not work in another, even though in the same type of industry. In this sense, the purpose of this research is to identify how the oil and gas companies can manage innovation and what are the main elements, their interrelations and structure, required for managing innovation effectively in this critical sector for the world economy. The study follows a holistic single case study in a National Oil Company (NOC) of a developing country to explore how innovation performs in the industry, what are the main elements regarding innovation management and their interactions according to the nature of the industry. Contributory literature and qualitative data from the case study company (with the use of non-standardized interviews) is collected and analyzed. The research confirms the relevance and importance of the definition and implementation of an innovation framework in order to ensure the generation of value and organize as well as guide the efforts in innovation done by a firm. In this way based on the theoretical background, research´s findings, and in the company´s innovation environment and conditions, a framework for managing innovation at the case study company is suggested. This study is one of the few, if not only one, that has reviewed the way as oil and gas companies manage innovation and its practical implementation in a company from a developing country. Both researchers and practitioners will get a photograph of understanding innovation management in the oil and gas industry and its growing necessity in the business world. Some issues have been highlighted, so that future study can be focused in those directions. In fact, even though research on innovation management has significantly grown, there are still many issues that need to be addressed to get insight about managing innovation in various contexts and industries. Studies are mostly performed in the context of large firms and in developed countries, so then research in the context of developing countries is still almost an untouched area, especially in the oil and gas industry. Finally, from the research it seems crucial to explore the effect of some innovation-related variables such as: open innovation in third world economies and in state-own companies; the impact of mergers and acquisitions in innovation performance in oil and gas companies; value measurement in the first stages of the innovation process; and, development of innovation capabilities in companies from developing nations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uusiutuvan sähköntuotannon osuuden kasvaessa kasvaa tarve tasata sähköntuotannon ja kulutuksen vaihteluita varastoimalla sähköä. Power to Gas (PtG) - sähköenergiasta luonnonkaasua tarjoaa yhden mahdollisuuden varastoida sähköä. Sähköä käytetään veden elektrolyysiin, jossa syntynyt vety käytetään metanoinissa yhdessä hiilidioksidin kanssa muodostamaan korvaavaa luonnonkaasua. Näin syntynyttä korvaava luonnonkaasua sähköstä kutsutaan e-SNG-kaasuksi. Tässä työssä tutkitaan PtG-laitoksen investointi, käyttö- ja kunnossapitokuluja. Työssä luodaan laskentamalli, jolla lasketaan PtG-laitoksen neljälle käyttötapaukselle kannattavuuslaskelma. Käyttötapauksille lasketaan myös herkkyystarkasteluja. Kannattavuuslaskelmien perusteella päätellään PtG-laitoksen liiketoimintamahdollisuudet Suomessa. Työssä laskettujen kannattavuuslaskelmien perusteella PtG-laitoksen perustapausten liiketoimintamahdollisuudet ovat huonot. Laskettujen herkkyystarkastelujen perusteella havaittiin, että investointikulut, laitoksen ajoaika ja lisätulot hapesta ja lämmöstä ovat kannattavuuden kannalta kriittisimmät menestystekijät.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The greatest threat that the biodegradable waste causes on the environment is the methane produced in landfills by the decomposition of this waste. The Landfill Directive (1999/31/EC) aims to reduce the landfilling of biodegradable waste. In Finland, 31% of biodegradable municipal waste ended up into landfills in 2012. The pressure of reducing disposing into landfills is greatly increased by the forthcoming landfill ban on biodegradable waste in Finland. There is a need to discuss the need for increasing the utilization of biodegradable waste in regional renewable energy production to utilize the waste in a way that allows the best possibilities to reduce GHG emissions. The objectives of the thesis are: (1) to find important factors affecting renewable energy recovery possibilities from biodegradable waste, (2) to determine the main factors affecting the GHG balance of biogas production system and how to improve it and (3) to find ways to define energy performance of biogas production systems and what affects it. According to the thesis, the most important factors affecting the regional renewable energy possibilities from biodegradable waste are: the amount of available feedstock, properties of feedstock, selected utilization technologies, demand of energy and material products and the economic situation of utilizing the feedstocks. The biogas production by anaerobic digestion was seen as the main technology for utilizing biodegradable waste in agriculturally dense areas. The main reason for this is that manure was seen as the main feedstock, and it can be best utilized with anaerobic digestion, which can produce renewable energy while maintaining the spreading of nutrients on arable land. Biogas plants should be located close to the heat demand that would be enough to receive the produced heat also in the summer months and located close to the agricultural area where the digestate could be utilized. Another option for biogas use is to upgrade it to biomethane, which would require a location close to the natural gas grid. The most attractive masses for biogas production are municipal and industrial biodegradable waste because of gate fees the plant receives from them can provide over 80% of the income. On the other hand, directing gate fee masses for small-scale biogas plants could make dispersed biogas production more economical. In addition, the combustion of dry agricultural waste such as straw would provide a greater energy amount than utilizing them by anaerobic digestion. The complete energy performance assessment of biogas production system requires the use of more than one system boundary. These can then be used in calculating output–input ratios of biogas production, biogas plant, biogas utilization and biogas production system, which can be used to analyze different parts of the biogas production chain. At the moment, it is difficult to compare different biogas plants since there is a wide variation of definitions for energy performance of biogas production. A more consistent way of analyzing energy performance would allow comparing biogas plants with each other and other recovery systems and finding possible locations for further improvement. Both from the GHG emission balance and energy performance point of view, the energy consumption at the biogas plant was the most significant factor. Renewable energy use to fulfil the parasitic energy demand at the plant would be the most efficient way to reduce the GHG emissions at the plant. The GHG emission reductions could be increased by upgrading biogas to biomethane and displacing natural gas or petrol use in cars when compared to biogas CHP production. The emission reductions from displacing mineral fertilizers with digestate were seen less significant, and the greater N2O emissions from spreading digestate might surpass the emission reductions from displacing mineral fertilizers.