66 resultados para Adaptive parameters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alfa Laval Aalborg Oy designs and manufactures waste heat recovery systems utilizing extended surfaces. The waste heat recovery boiler considered in this thesis is a water-tube boiler where exhaust gas is used as the convective heat transfer medium and water or steam flowing inside the tubes is subject to cross-flow. This thesis aims to contribute to the design of waste heat recovery boiler unit by developing a numerical model of the H-type finned tube bundle currently used by Alfa Laval Aalborg Oy to evaluate the gas-side heat transfer performance. The main objective is to identify weaknesses and potential areas of development in the current H-type finned tube design. In addition, numerical simulations for a total of 15 cases with varying geometric parameters are conducted to investigate the heat transfer and pressure drop performance dependent on H-type fin geometry. The investigated geometric parameters include fin width and height, fin spacing, and fin thickness. Comparison between single and double tube type configuration is also conducted. Based on the simulation results, the local heat transfer and flow behaviour of the H-type finned tube is presented including boundary layer development between the fins, the formation of recirculation zone behind the tubes, and the local variations of flow velocity and temperature within the tube bundle and on the fin surface. Moreover, an evaluation of the effects of various fin parameters on heat transfer and pressure drop performance of H-type finned tube bundle has been provided. It was concluded that from the studied parameters fin spacing and fin width had the most significant effect on tube bundle performance and the effect of fin thickness was the least important. Furthermore, the results suggested that the heat transfer performance would increase due to enhanced turbulence if the current double tube configuration is replaced with single tube configuration, but further investigation and experimental measurements are required in order to validate the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern food systems face complex global challenges such as climate change, resource scarcities, population growth, concentration and globalization. It is not possible to forecast how all these challenges will affect food systems, but futures research methods provide possibilities to enable better understanding of possible futures and that way increases futures awareness. In this thesis, the two-round online Delphi method was utilized to research experts’ opinions about the present and the future resilience of the Finnish food system up to 2050. The first round questionnaire was constructed based on the resilience indicators developed for agroecosystems. Sub-systems in the study were primary production (main focus), food industry, retail and consumption. Based on the results from the first round, the future images were constructed for primary production and food industry sub-sections. The second round asked experts’ opinion about the future images’ probability and desirability. In addition, panarchy scenarios were constructed by using the adaptive cycle and panarchy frameworks. Furthermore, a new approach to general resilience indicators was developed combining “categories” of the social ecological systems (structure, behaviors and governance) and general resilience parameters (tightness of feedbacks, modularity, diversity, the amount of change a system can withstand, capacity of learning and self- organizing behavior). The results indicate that there are strengths in the Finnish food system for building resilience. According to experts organic farms and larger farms are perceived as socially self-organized, which can promote innovations and new experimentations for adaptation to changing circumstances. In addition, organic farms are currently seen as the most ecologically self-regulated farms. There are also weaknesses in the Finnish food system restricting resilience building. It is important to reach optimal redundancy, in which efficiency and resilience are in balance. In the whole food system, retail sector will probably face the most dramatic changes in the future, especially, when panarchy scenarios and the future images are reflected. The profitability of farms is and will be a critical cornerstone of the overall resilience in primary production. All in all, the food system experts have very positive views concerning the resilience development of the Finnish food system in the future. Sometimes small and local is beautiful, sometimes large and international is more resilient. However, when probabilities and desirability of the future images were questioned, there were significant deviations. It appears that experts do not always believe desirable futures to materialize.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach to the determination of the thermal parameters of high-power batteries is introduced here. Application of local heat flux measurement with a gradient heat flux sensor (GHFS) allows determination of the cell thermal parameters in di_erent surface points of the cell. The suggested methodology is not cell destructive as it does not require deep discharge of the cell or application of any charge/discharge cycles during measurements of the thermal parameters of the cell. The complete procedure is demonstrated on a high-power Li-ion pouch cell, and it is verified on a sample with well-known thermal parameters. A comparison of the experimental results with conventional thermal characterization methods shows an acceptably low error. The dependence of the cell thermal parameters on state of charge (SoC) and measurement points on the surface was studied by the proposed measurement approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents synopsis of efficient strategies used in power managements for achieving the most economical power and energy consumption in multicore systems, FPGA and NoC Platforms. In this work, a practical approach was taken, in an effort to validate the significance of the proposed Adaptive Power Management Algorithm (APMA), proposed for system developed, for this thesis project. This system comprise arithmetic and logic unit, up and down counters, adder, state machine and multiplexer. The essence of carrying this project firstly, is to develop a system that will be used for this power management project. Secondly, to perform area and power synopsis of the system on these various scalable technology platforms, UMC 90nm nanotechnology 1.2v, UMC 90nm nanotechnology 1.32v and UMC 0.18 μmNanotechnology 1.80v, in order to examine the difference in area and power consumption of the system on the platforms. Thirdly, to explore various strategies that can be used to reducing system’s power consumption and to propose an adaptive power management algorithm that can be used to reduce the power consumption of the system. The strategies introduced in this work comprise Dynamic Voltage Frequency Scaling (DVFS) and task parallelism. After the system development, it was run on FPGA board, basically NoC Platforms and on these various technology platforms UMC 90nm nanotechnology1.2v, UMC 90nm nanotechnology 1.32v and UMC180 nm nanotechnology 1.80v, the system synthesis was successfully accomplished, the simulated result analysis shows that the system meets all functional requirements, the power consumption and the area utilization were recorded and analyzed in chapter 7 of this work. This work extensively reviewed various strategies for managing power consumption which were quantitative research works by many researchers and companies, it's a mixture of study analysis and experimented lab works, it condensed and presents the whole basic concepts of power management strategy from quality technical papers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There exist several researches and applications about laser welding monitoring and parameter control but not a single one have been created for controlling of laser scribing processes. Laser scribing is considered to be very fast and accurate process and thus it would be necessary to develop accurate turning and monitoring system for such a process. This research focuses on finding out whether it would be possible to develop real-time adaptive control for ultra-fast laser scribing processes utilizing spectrometer online monitoring. The thesis accurately presents how control code for laser parameter tuning is developed using National Instrument's LabVIEW and how spectrometer is being utilized in online monitoring. Results are based on behavior of the control code and accuracy of the spectrometer monitoring when scribing different steel materials. Finally control code success is being evaluated and possible development ideas for future are presented.