57 resultados para wood-based panels


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is based on computational chemistry studies on lignans, focusing on the naturally occurring lignan hydroxymatairesinol (HMR) (Papers I II) and on TADDOL-like conidendrin-based chiral 1,4-diol ligands (LIGNOLs) (Papers III V). A complete quantum chemical conformational analysis on HMR was previously conducted by Dr. Antti Taskinen. In the works reported in this thesis, HMR was further studied by classical molecular dynamics (MD) simulations in aqueous solution including torsional angle analysis, quantum chemical solvation e ect study by the COnductorlike Screening MOdel (COSMO), and hydrogen bond analysis (Paper I), as well as from a catalytic point of view including protonation and deprotonation studies at di erent levels of theory (Paper II). The computational LIGNOL studies in this thesis constitute a multi-level deterministic structural optimization of the following molecules: 1,1-diphenyl (2Ph), two diastereomers of 1,1,4-triphenyl (3PhR, 3PhS), 1,1,4,4-tetraphenyl (4Ph) and 1,1,4,4-tetramethyl (4Met) 1,4-diol (Paper IV) and a conformational solvation study applying MD and COSMO (Paper V). Furthermore, a computational study on hemiketals in connection with problems in the experimental work by Docent Patrik Eklund's group synthesizing the LIGNOLs based on natural products starting from HMR, is shortly described (Paper III).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major type of non-cellulosic polysaccharides (hemicelluloses) in softwoods, the partly acetylated galactoglucomannans (GGMs), which comprise about 15% of spruce wood, have attracted growing interest because of their potential to become high-value products with applications in many areas. The main objective of this work was to explore the possibilities to extract galactoglucomannans in native, polymeric form in high yield from spruce wood with pressurised hot-water, and to obtain a deeper understanding of the process chemistry involved. Spruce (Picea abies) chips and ground wood particles were extracted using an accelerated solvent extractor (ASE) in the temperature range 160 – 180°C. Detailed chemical analyses were done on both the water extracts and the wood residues. As much as 80 – 90% of the GGMs in spruce wood, i.e. about 13% based on the original wood, could be extracted from ground spruce wood with pure water at 170 – 180°C with an extraction time of 60 min. GGMs comprised about 75% of the extracted carbohydrates and about 60% of the total dissolved solids. Other substances in the water extracts were xylans, arabinogalactans, pectins, lignin and acetic acid. The yields from chips were only about 60% of that from ground wood. Both the GGMs and other non-cellulosic polysaccharides were extensively hydrolysed at severe extraction conditions when pH dropped to the level of 3.5. Addition of sodium bicarbonate increased the yields of polymeric GGMs at low additions, 2.5 – 5 mM, where the end pH remained around 3.9. However, at higher addition levels the yields decreased, mainly because the acetyl groups in GGMs were split off, leading to a low solubility of GGMs. Extraction with buffered water in the pH range 3.8 – 4.4 gave similar yields as with plain water, but gave a higher yield of polymeric GGMs. Moreover, at these pH levels the hydrolysis of acetyl groups in GGMs was significantly inhibited. It was concluded that hot-water extraction of polymeric GGMs in good yields (up to 8% of wood) demands appropriate control of pH, in a narrow range about 4. These results were supported by a study of hydrolysis of GGM at constant pH in the range of 3.8 – 4.2 where a kinetic model for degradation of GGM was developed. The influence of wood particle size on hot-water extraction was studied with particles in the range of 0.1 – 2 mm. The smallest particles (< 0.1 mm) gave 20 – 40% higher total yield than the coarsest particles (1.25 – 2 mm). The difference was greatest at short extraction times. The results indicated that extraction of GGMs and other polysaccharides is limited mainly by the mass transfer in the fibre wall, and for coarse wood particles also in the wood matrix. Spruce sapwood, heartwood and thermomechnical pulp were also compared, but only small differences in yields and composition of extracts were found. Two methods for isolation and purification of polymeric GGMs, i.e. membrane filtration and precipitation in ethanol-water, were compared. Filtration through a series of membranes with different pore sizes separated GGMs of different molar masses, from polymers to oligomers. Polysaccharides with molar mass higher than 4 kDa were precipitated in ethanol-water. GGMs comprised about 80% of the precipitated polysaccharides. Other polysaccharides were mainly arabinoglucuronoxylans and pectins. The ethanol-precipitated GGMs were by 13C NMR spectroscopy verified to be very similar to GGMs extracted from spruce wood in low yield at a much lower temperature, 90°C. The obtained large body of experimental data could be utilised for further kinetic and economic calculations to optimise technical hot-water extractionof softwoods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to study the effects of partial removal of wood hemicelluloses on the properties of kraft pulp.The work was conducted by extracting hemicelluloses (1) by a softwood chip pretreatment process prior to kraft pulping, (2) by alkaline extraction from bleached birch kraft pulp, and (3) by enzymatic treatment, xylanase treatment in particular, of bleached birch kraft pulp. The qualitative and quantitative changes in fibers and paper properties were evaluated. In addition, the applicability of the extraction concepts and hemicellulose-extracted birch kraft pulp as a raw material in papermaking was evaluated in a pilot-scale papermaking environment. The results showed that each examined hemicellulose extraction method has its characteristic effects on fiber properties, seen as differences in both the physical and chemical nature of the fibers. A prehydrolysis process prior to the kraft pulping process offered reductions in cooking time, bleaching chemical consumption and produced fibers with low hemicellulose content that are more susceptible to mechanically induced damages and dislocations. Softwood chip pretreatment for hemicellulose recovery prior to cooking, whether acidic or alkaline, had an impact on the physical properties of the non-refined and refined pulp. In addition, all the pretreated pulps exhibited slower beating response than the unhydrolyzed reference pulp. Both alkaline extraction and enzymatic (xylanase) treatment of bleached birch kraft pulp fibers indicated very selective hemicellulose removal, particularly xylan removal. Furthermore, these two hemicellulose-extracted birch kraft pulps were utilized in a pilot-scale papermaking environment in order to evaluate the upscalability of the extraction concepts. Investigations made using pilot paper machine trials revealed that some amount of alkalineextracted birch kraft pulp, with a 24.9% reduction in the total amount of xylan, could be used in the papermaking stock as a mixture with non-extracted pulp when producing 75 g/m2 paper. For xylanase-treated fibers there were no reductions in the mechanical properties of the 180 g/m2 paper produced compared to paper made from the control pulp, although there was a 14.2% reduction in the total amount of xylan in the xylanase-treated pulp compared to the control birch kraft pulp. This work emphasized the importance of the hemicellulose extraction method in providing new solutions to create functional fibers and in providing a valuable hemicellulose co-product stream. The hemicellulose removal concept therefore plays an important role in the integrated forest biorefinery scenario, where the target is to the co-production of hemicellulose-extracted pulp and hemicellulose-based chemicals or fuels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The report 'Conditions and practices in the commercialisation of innovation in wood industry' has been written as a part of the Wood Academy project. The report analyses the commercialisation conditions and practices of wood industry by utilising product categorisation based on a conceptual schema which combines the aspects of the transfer of the procession of utility and the degree of form/service utility (or value-added) created or provided by the company. Open innovation approaches help to perceive the possible new product and service innovations as well as the new business models and earning logics in the industry. The report also contains brief company cases to demonstrate theory-to-practice and showcase company examples from successful Finnish companies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective processes to fractionate the main compounds in biomass, such as wood, are a prerequisite for an effective biorefinery. Water is environmentally friendly and widely used in industry, which makes it a potential solvent also for forest biomass. At elevated temperatures over 100 °C, water can readily hydrolyse and dissolve hemicelluloses from biomass. In this work, birch sawdust was extracted using pressurized hot water (PHWE) flow-through systems. The hypothesis of the work was that it is possible to obtain polymeric, water-soluble hemicelluloses from birch sawdust using flow-through PHW extractions at both laboratory and large scale. Different extraction temperatures in the range 140–200 °C were evaluated to see the effect of temperature to the xylan yield. The yields and extracted hemicelluloses were analysed to obtain sugar ratios, the amount of acetyl groups, furfurals and the xylan yields. Higher extraction temperatures increased the xylan yield, but decreased the molar mass of the dissolved xylan. As the extraction temperature increased, more acetic acid was released from the hemicelluloses, thus further decreasing the pH of the extract. There were only trace amounts of furfurals present after the extractions, indicating that the treatment was mild enough not to degrade the sugars further. The sawdust extraction density was increased by packing more sawdust in the laboratory scale extraction vessel. The aim was to obtain extracts with higher concentration than in typical extraction densities. The extraction times and water flow rates were kept constant during these extractions. The higher sawdust packing degree decreased the water use in the extractions and the extracts had higher hemicellulose concentrations than extractions with lower sawdust degrees of packing. The molar masses of the hemicelluloses were similar in higher packing degrees and in the degrees of packing that were used in typical PHWE flow-through extractions. The structure of extracted sawdust was investigated using small angle-(SAXS) and wide angle (WAXS) x-ray scattering. The cell wall topography of birch sawdust and extracted sawdust was compared using x-ray tomography. The results showed that the structure of the cell walls of extracted birch sawdust was preserved but the cell walls were thinner after the extractions. Larger pores were opened inside the fibres and cellulose microfibrils were more tightly packed after the extraction. Acetate buffers were used to control the pH of the extracts during the extractions. The pH control prevented excessive xylan hydrolysis and increased the molar masses of the extracted xylans. The yields of buffered extractions were lower than for plain water extractions at 160–170 °C, but at 180 °C yields were similar to those from plain water and pH buffers. The pH can thus be controlled during extraction with acetate buffer to obtain xylan with higher molar mass than those obtainable using plain water. Birch sawdust was extracted both in the laboratory and pilot scale. The performance of the PHWE flow-through system was evaluated in the laboratory and the pilot scale using vessels with the same shape but different volumes, with the same relative water flow through the sawdust bed, and in the same extraction temperature. Pre-steaming improved the extraction efficiency and the water flow through the sawdust bed. The extracted birch sawdust and the extracted xylan were similar in both laboratory and pilot scale. The PHWE system was successfully scaled up by a factor of 6000 from the laboratory to pilot scale and extractions performed equally well in both scales. The results show that a flow-through system can be further scaled up and used to extract water-soluble xylans from birch sawdust. Extracted xylans can be concentrated, purified, and then used in e.g. films and barriers, or as building blocks for novel material applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing population on earth along with diminishing fossil deposits and the climate change debate calls out for a better utilization of renewable, bio-based materials. In a biorefinery perspective, the renewable biomass is converted into many different products such as fuels, chemicals, and materials, quite similar to the petroleum refinery industry. Since forests cover about one third of the land surface on earth, ligno-cellulosic biomass is the most abundant renewable resource available. The natural first step in a biorefinery is separation and isolation of the different compounds the biomass is comprised of. The major components in wood are cellulose, hemicellulose, and lignin, all of which can be made into various end-products. Today, focus normally lies on utilizing only one component, e.g., the cellulose in the Kraft pulping process. It would be highly desirable to utilize all the different compounds, both from an economical and environmental point of view. The separation process should therefore be optimized. Hemicelluloses can partly be extracted with hot-water prior to pulping. Depending in the severity of the extraction, the hemicelluloses are degraded to various degrees. In order to be able to choose from a variety of different end-products, the hemicelluloses should be as intact as possible after the extraction. The main focus of this work has been on preserving the hemicellulose molar mass throughout the extraction at a high yield by actively controlling the extraction pH at the high temperatures used. Since it has not been possible to measure pH during an extraction due to the high temperatures, the extraction pH has remained a “black box”. Therefore, a high-temperature in-line pH measuring system was developed, validated, and tested for hot-water wood extractions. One crucial step in the measurements is calibration, therefore extensive efforts was put on developing a reliable calibration procedure. Initial extractions with wood showed that the actual extraction pH was ~0.35 pH units higher than previously believed. The measuring system was also equipped with a controller connected to a pump. With this addition it was possible to control the extraction to any desired pH set point. When the pH dropped below the set point, the controller started pumping in alkali and by that the desired set point was maintained very accurately. Analyses of the extracted hemicelluloses showed that less hemicelluloses were extracted at higher pH but with a higher molar-mass. Monomer formation could, at a certain pH level, be completely inhibited. Increasing the temperature, but maintaining a specific pH set point, would speed up the extraction without degrading the molar-mass of the hemicelluloses and thereby intensifying the extraction. The diffusion of the dissolved hemicelluloses from the wood particle is a major part of the extraction process. Therefore, a particle size study ranging from 0.5 mm wood particles to industrial size wood chips was conducted to investigate the internal mass transfer of the hemicelluloses. Unsurprisingly, it showed that hemicelluloses were extracted faster from smaller wood particles than larger although it did not seem to have a substantial effect on the average molar mass of the extracted hemicelluloses. However, smaller particle sizes require more energy to manufacture and thus increases the economic cost. Since bark comprises 10 – 15 % of a tree, it is important to also consider it in a biorefinery concept. Spruce inner and outer bark was hot-water extracted separately to investigate the possibility to isolate the bark hemicelluloses. It was showed that the bark hemicelluloses comprised mostly of pectic material and differed considerably from the wood hemicelluloses. The bark hemicelluloses, or pectins, could be extracted at lower temperatures than the wood hemicelluloses. A chemical characterization, done separately on inner and outer bark, showed that inner bark contained over 10 % stilbene glucosides that could be extracted already at 100 °C with aqueous acetone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trees produce an enormous amount of compounds that are still scantly utilized.However, the results obtained from structurally similar biochemicals suggest that wood-derived compounds could be used for the protection of health in various applications. Polyphenols, for instance, could be extracted from wood in high quantities. Similar polyphenols to those in wood include resveratrol, found in grapes, and secoisolariciresinol, present in flaxseeds. Their consumption has been inversely associated with the incidence of various diseases, especially certain cancers and obesity-related disorders. The aim of this study was to determine the health-promoting effects of woodderived biochemicals. The effect of spruce hemicellulose on the growth of probiotic intestinal bacteria was studied. The results suggest that the bifidobacteria and lactobacilli can utilize hemicellulose and thus it has potential as a prebiotic compound. In particular, the efficacy of pine polyphenols to inhibit the growth of prostate cancer was our main interest. It was found that stilbenoids and lignans inhibited the proliferation of various cancer cells, and reduced the growth of prostate cancer xenografts in mice. The polyphenol rich pine knot extract was well tolerated in diet and extract-derived polyphenols were rapidly absorbed after intake. Furthermore, we determined the effect of the dietary pine knot extract on the weight gain and the expression of aromatase gene in reporter mouse expressing the promoter region of a human aromatase gene. It was found that dietary pine knot extract alleviated the obesity-induced inflammation in adipose tissue and downregulated the expression of a human aromatase gene. Taken together, several components of spruce and pine may have a future role as health-promoting compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Torrefaction is the partial pyrolysis of wood characterised by thermal degradation of predominantly hemicellulose under inert atmosphere. Torrefaction can be likened to coffee roasting but with wood in place of beans. This relatively new process concept makes wood more like coal. Torrefaction has attracted interest because it potentially enables higher rates of co-firing in existing pulverised-coal power plants and hence greater net CO2 emission reductions. Academic and entrepreneurial interest in torrefaction has sky rocketed in the last decade. Research output has focused on the many aspects of torrefaction – from detailed chemical changes in feedstock to globally-optimised production and supply scenarios with which to sustain EU emission-cutting directives. However, despite its seemingly simple concept, torrefaction has retained a somewhat mysterious standing. Why hasn’t torrefied pellet production become fully commercialised? The question is one of feasibility. This thesis addresses this question. Herein, the feasibility of torrefaction in co-firing applications is approached from three directions. Firstly, the natural limitations imposed by the structure of wood are assessed. Secondly, the environmental impact of production and use of torrefied fuel is evaluated and thirdly, economic feasibility is assessed based on the state of the art of pellet making. The conclusions reached in these domains are as follows. Modification of wood’s chemical structure is limited by its naturally existing constituents. Consequently, key properties of wood with regards to its potential as a co-firing fuel have a finite range. The most ideal benefits gained from wood torrefaction cannot all be realised simultaneously in a single process or product. Although torrefaction at elevated pressure may enhance some properties of torrefied wood, high-energy torrefaction yields are achieved at the expense of other key properties such as heating value, grindability, equilibrium moisture content and the ability to pelletise torrefied wood. Moreover, pelletisation of even moderately torrefied fuels is challenging and achieving a standard level of pellet durability, as required by international standards, is not trivial. Despite a reduced moisture content, brief exposure of torrefied pellets to water from rainfall or emersion results in a high level of moisture retention. Based on the above findings, torrefied pellets are an optimised product. Assessment of energy and CO2-equivalent emission balance indicates that there is no environmental barrier to production and use of torrefied pellets in co-firing. A long product transport distance, however, is necessary in order for emission benefits to exceed those of conventional pellets. Substantial CO2 emission reductions appear possible with this fuel if laboratory milling results carry over to industrial scales for direct co-firing. From demonstrated state-of-the-art pellet properties, however, the economic feasibility of torrefied pellet production falls short of conventional pellets primarily due to the larger capital investment required for production. If the capital investment for torrefied pellet production can be reduced significantly or if the pellet-making issues can be resolved, the two production processes could be economically comparable. In this scenario, however, transatlantic shipping distances and a dry fuel are likely necessary for production to be viable. Based on demonstrated pellet properties to date, environmental aspects and production economics, it is concluded that torrefied pellets do not warrant investment at this time. However, from the presented results, the course of future research in this field is clear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kandidaatintyö tehtiin osana PulpVision-tutkimusprojektia, jonka tarkoituksena on kehittää kuvapohjaisia laskenta- ja luokittelumetodeja sellun laaduntarkkailuun paperin valmistuksessa. Tämän tutkimusprojektin osana on aiemmin kehitetty metodi, jolla etsittiin kaarevia rakenteita kuvista, ja tätä metodia hyödynnettiin kuitujen etsintään kuvista. Tätä metodia käytettiin lähtökohtana kandidaatintyölle. Työn tarkoituksena oli tutkia, voidaanko erilaisista kuitukuvista laskettujen piirteiden avulla tunnistaa kuvassa olevien kuitujen laji. Näissä kuitukuvissa oli kuituja neljästä eri puulajista ja yhdestä kasvista. Nämä lajit olivat akasia, koivu, mänty, eukalyptus ja vehnä. Jokaisesta lajista valittiin 100 kuitukuvaa ja nämä kuvat jaettiin kahteen ryhmään, joista ensimmäistä käytettiin opetusryhmänä ja toista testausryhmänä. Opetusryhmän avulla jokaiselle kuitulajille laskettiin näitä kuvaavia piirteitä, joiden avulla pyrittiin tunnistamaan testausryhmän kuvissa olevat kuitulajit. Nämä kuvat oli tuottanut CEMIS-Oulu (Center for Measurement and Information Systems), joka on mittaustekniikkaan keskittynyt yksikkö Oulun yliopistossa. Yksittäiselle opetusryhmän kuitukuvalle laskettiin keskiarvot ja keskihajonnat kolmesta eri piirteestä, jotka olivat pituus, leveys ja kaarevuus. Lisäksi laskettiin, kuinka monta kuitua kuvasta löydettiin. Näiden piirteiden eri yhdistelmien avulla testattiin tunnistamisen tarkkuutta käyttämällä k:n lähimmän naapurin menetelmää ja Naiivi Bayes -luokitinta testausryhmän kuville. Testeistä saatiin lupaavia tuloksia muun muassa pituuden ja leveyden keskiarvoja käytettäessä saavutettiin jopa noin 98 %:n tarkkuus molemmilla algoritmeilla. Tunnistuksessa kuitujen keskimäärinen pituus vaikutti olevan kuitukuvia parhaiten kuvaava piirre. Käytettyjen algoritmien välillä ei ollut suurta vaihtelua tarkkuudessa. Testeissä saatujen tulosten perusteella voidaan todeta, että kuitukuvien tunnistaminen on mahdollista. Testien perusteella kuitukuvista tarvitsee laskea vain kaksi piirrettä, joilla kuidut voidaan tunnistaa tarkasti. Käytetyt lajittelualgoritmit olivat hyvin yksinkertaisia, mutta ne toimivat testeissä hyvin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The print substrate influences the print result in dry toner electrophotography, which is a widely used digital printing method. The influence of the substrate can be seen more easily in color printing, as that is a more complex process compared to monochrome printing. However, the print quality is also affected by the print substrate in grayscale printing. It is thus in the interests of both substrate producers and printing equipment manufacturers to understand the substrate properties that influence the quality of printed images in more detail. In dry toner electrophotography, the image is printed by transferring charged toner particles to the print substrate in the toner transfer nip, utilizing an electric field, in addition to the forces linked to the contact between toner particles and substrate in the nip. The toner transfer and the resulting image quality are thus influenced by the surface texture and the electrical and dielectric properties of the print substrate. In the investigation of the electrical and dielectric properties of the papers and the effects of substrate roughness, in addition to commercial papers, controlled sample sets were made on pilot paper machines and coating machines to exclude uncontrolled variables from the experiments. The electrical and dielectric properties of the papers investigated were electrical resistivity and conductivity, charge acceptance, charge decay, and the dielectric permittivity and losses at different frequencies, including the effect of temperature. The objective was to gain an understanding of how the electrical and dielectric properties are affected by normal variables in papermaking, including basis weight, material density, filler content, ion and moisture contents, and coating. In addition, the dependency of substrate resistivity on the electric field applied was investigated. Local discharging did not inhibit transfer with the paper roughness levels that are normal in electrophotographic color printing. The potential decay of paper revealed that the charge decay cannot be accurately described with a single exponential function, since in charge decay there are overlapping mechanisms of conduction and depolarization of paper. The resistivity of the paper depends on the NaCl content and exponentially on moisture content although it is also strongly dependent on the electric field applied. This dependency is influenced by the thickness, density, and filler contents of the paper. Furthermore, the Poole-Frenkel model can be applied to the resistivity of uncoated paper. The real part of the dielectric constant ε’ increases with NaCl content and relative humidity, but when these materials cannot polarize freely, the increase cannot be explained by summing the effects of their dielectric constants. Dependencies between the dielectric constant and dielectric loss factor and NaCl content, temperature, and frequency show that in the presence of a sufficient amount of moisture and NaCl, new structures with a relaxation time of the order of 10-3 s are formed in paper. The ε’ of coated papers is influenced by the addition of pigments and other coating additives with polarizable groups and due to the increase in density. The charging potential decreases and the electrical conductivity, potential decay rate, and dielectric constant of paper increase with increasing temperature. The dependencies are exponential and the temperature dependencies and their activation energies are altered by the ion content. The results have been utilized in manufacturing substrates for electrophotographic color printing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Driven by the global trend in the sustainable economy development and environmental concerns, the exploring of plant-derived biomaterials or biocomposites for potential biomedical and/or pharmaceutical applications has received tremendous attention. Therefore, the work of this thesis is dedicated to high-value and high-efficiency utilization of plant-derived materials, with the focus on cellulose and hemicelluloses in the field of biomedical applications in a novel biorefinery concept. The residual cellulose of wood processing waste, sawdust, was converted into cellulose nanofibrils (CNFs) with tunable surface charge density and geometric size through 2,2,6,6-tetramethylpiperidinyloxy (TEMPO)-mediated oxidation and mechanical defibrillation. The sawdust-based CNFs and its resultant free-standing films showed comparable or even better mechanical properties than those from a commercial bleached kraft pulp at the same condition, demonstrating the feasibility of producing CNFs and films thereof with outstanding mechanical properties from birch sawdust by a process incorporated into a novel biorefinery platform recovering also polymeric hemicelluloses for other applications. Thus, it is providing an efficient route to upgrade sawdust waste to valuable products. The surface charge density and geometric size of the CNFs were found to play key roles in the stability of the CNF suspension, as well as the gelling properties, swelling behavior, mechanical stiffness, morphology and microscopic structural properties, and biocompatibility of CNF-based materials (i.e. films, hydrogels, and aerogels). The CNFs with tunable surface chemistry and geometric size was found promising applications as transparent and tough barrier materials or as reinforcing additive for production of biocomposites. The CNFs was also applied as structural matrices for the preparation of biocomposites possessing electrical conductivity and antimicrobial activity by in situ polymerization and coating of polypyrrole, and incorporation of silver nanoparticles, which make the material possible for potential wound healing application. The CNF-based matrices (films, hydrogels, and aerogels) with tunable structural and mechanical properties and biocompatibility were further prepared towards an application as 3D scaffolds in tissue engineering. The structural and mechanical strength of the CNF matrices could be tuned by controlling the charge density of the nanocellulose, as well as the pH and temperature values of the hydrogel formation conditions. Biological tests revealed that the CNF scaffolds could promote the survival and proliferation of tumor cells, and enhance the transfection of exogenous DNA into the cells, suggesting the usefulness of the CNF-based 3D matrices in supporting crucial cellular processes during cell growth and proliferation. The CNFs was applied as host materials to incorporate biomolecules for further biomedical application. For example, to investigate how the biocompatibility of a scaffold is influenced by its mechanical and structural properties, these properties of CNF-based composite matrices were controlled by incorporation of different hemicelluloses (O-acetyl galactoglucomanan (GGM), xyloglucan (XG), and xylan) into CNF hydrogel networks in different ratios and using two different approaches. The charge density of the CNFs, the incorporated hemicellulose type and amount, and the swelling time of the hydrogels were found to affect the pore structure, the mechanical strength, and thus the cells growth in the composite hydrogel scaffolds. The mechanical properties of the composite hydrogels were found to have an influence on the cell viability during the wound healing relevant 3T3 fibroblast cell culture. The thusprepared CNF composite hydrogels may work as promising scaffolds in wound healing application to provide supporting networks and to promote cells adhesion, growth, and proliferation.