85 resultados para thermal transport
Resumo:
ELY Centres strategy brocshure.
Resumo:
Broschure of The Centres for Economic Development, Transport and the Environment.
Resumo:
The Roll-to-Roll process makes it possible to print electronic products continuously onto a uniform substrate. Printing components on flexible surfaces can bring down the costs of simple electronic devices such as RFID tags, antennas and transistors. The possibility of quickly printing flexible electronic components opens up a wide array of novel products previously too expensive to produce on a large scale. Several different printing methods can be used in Roll-to-Roll printing, such as gravure, spray, offset, flexographic and others. Most of the methods can also be mixed in one production line. Most of them still require years of research to reach a significant commercial level. The research for this thesis was carried out at the Konkuk University Flexible Display Research Center (KU-FDRC) in Seoul, Korea. A system using Roll-to-Roll printing requires that the motion of the web can be controlled in every direction in order to align different layers of ink properly. Between printers the ink is dried with hot air. The effects of thermal expansion on the tension of the web are studied in this work, and a mathematical model was constructed on Matlab and Simulink. Simulations and experiments lead to the conclusion that the thermal expansion of the web has a great influence on the tension of the web. Also, experimental evidence was gained that the particular printing machine used for these experiments at KU-FDRC may have a problem in controlling the speeds of the cylinders which pull the web.
Resumo:
21 x 29 cm
Resumo:
17 x 25 cm
Resumo:
kuv., 24 x 12 cm
Resumo:
kuv., 14 x 22 cm
Resumo:
kuv., 17 x 23 cm
Resumo:
C-Jun N-terminal kinase (JNK) is traditionally recognized as a crucial factor in stress response and inducer of apoptosis upon various stimulations. Three isoforms build the JNK subfamily of MAPK; generally expressed JNK1 and JNK2 and brain specific JNK3. Degenerative potency placed JNK in the spotlight as potential pharmacological option for intervention. Unfortunately, adverse effects of potential drugs and observation that expression of only JNK2 and JNK3 are induced upon stress, restrained initial enthusiasm. Notably, JNK1 demonstrated atypical high constitutive activity in neurons that is not responsive to cellular stresses and indicated existence of physiological activity. This thesis aimed at revealing the physiological functions of JNK1 in actin homeostasis through novel effector MARCKS-Like 1 (MARCKSL1) protein, neuronal trafficking mediated by major kinesin-1 motor protein and microtubule (MT) dynamics via STMN2/SCG10. The screen for novel physiological JNK substrates revealed specific phosphorylation of C-terminal end of MARCKSL1 at S120, T148 and T183 both ex vivo and in vitro. By utilizing site-specific mutagenesis, various actin dynamics and migrations assays we were able to demonstrate that JNK1 phosphorylation specifically facilitates F-actin bundling and thus filament stabilisation. Consecutively, this molecular mechanism was proved to enhance formation of filopodia; cell surface projections that allow cell sensing surrounding environment and migrate efficiently. Our results visualize JNK dependent and MARCKSL1 executed induction of filopodia in neurons and fibroblast indicating general mechanism. Subsequently, inactivation of JNK action on MARCKSL1 shifts cellular actin machinery into lamellipodial dynamic arrangement. Tuning of actin cytoskeleton inevitably melds with cell migration. We observed that both active JNK and JNK pseudo-phosphorylated form of MARCKSL1 reduce actin turnover in intact cells leading to overall diminished cell motility. We demonstrate that tumour transformed cells from breast, prostate, lung and muscle-derived cancers upregulate MARCKSL1. We showed on the example of prostate cancer PC-3 cell line that JNK phosphorylation negatively controls MARCKSL1 ability to induce migration, which precedes cancer cell metastasis. The second round of identification of JNK physiological substrates resulted in detection of predominant motor protein kinesin-1 (Kif5). Mass spectrometry detailed analysis showed evident endogenous phosphorylation of kinesin-1 on S176 within motor domain that interacts with MT. In vitro phosphorylation of bacterially expressed kinesin heavy chain by JNK isoforms displayed higher specificity of JNK1 when compared to JNK3. Since, JNK1 is constitutively active in neurons it signified physiological aspect of kinesin-1 regulation. Subsequent biochemical examination revealed that kinesin-1, when not phosphorylated on JNK site, exhibits much higher affinity toward MTs. Expression of the JNK non-phosphorable kinesin-1 mutant in intact cells as well as in vitro single molecule imaging using total internal reflection fluorescence microscopy indicated that the mutant loses normal speed and is not able to move processively into proper cellular compartments. We identify novel kinesin-1 cargo protein STMN2/SCG10, which along with known kinesin-1 cargo BDNF is showing impaired trafficking when JNK activity is inhibited. Our data postulates that constitutive JNK activity in neurons is crucial for unperturbed physiologically relevant transport of kinesin-1 dependant cargo. Additionally, my work helps to validate another novel physiological JNK1 effector STMN2/SCG10 as determinant of axodendritic neurites dynamics in the developing brain through regulation of MT turnover. We show successively that this increased MT dynamics is crucial during developmental radial migration when brain layering occurs. Successively, we are able to show that introduction of JNK phosphorylation mimicking STMN2/SCG10 S62/73D mutant rescues completely JNK1 genetic deletion migration phenotype. We prove that STMN2/SCG10 is predominant JNK effector responsible for MT depolymerising activity and neurite length during brain development. Summarizing, this work describes identification of three novel JNK substrates MARCKSL1, kinesin-1 and STMN2/SCG10 and investigation of their roles in cytoskeleton dynamics and cargo transport. This data is of high importance to understand physiological meaning of JNK activity, which might have an adverse effect during pharmaceutical intervention aiming at blocking pathological JNK action.
Resumo:
In this Master’s Thesis a global transport packaging guideline for selected business areas was compiled for the Fiskars the company, which provides branded consumer goods for home, garden and outdoor use. The business areas included were Home and Garden business areas. The aim of the guideline was to be a comprehensive guide for the suppliers, product development, operations and external vendors of the company. The guideline consists of written instructions, tables and illustrations that provide useful information for players working with transport packages from sourcing through to shipments. As the role of corporate responsibility and sustainability has grown, a part of responsible manufacturing strategy includes using materials that are re-usable, recyclable or recoverable as energy or through composting. Hence packaging waste management implementations of different regions were also inspected. The resulting guide covers a range of topics concerning packaging and its transport. The topics include legal requirements, restricted materials and substances, preferred materials, markings, labeling of boxes, logistics and distribution center requirements, physical testing and an inspection checklist.
Resumo:
The European transport market has confronted several changes during the last decade. Due to European Union legislative mandates, the railway freight market was deregulated in 2007. The market followed the trend started by other transport modes as well as other previously regulated industries such as banking, telecommunications and energy. Globally, the first country to deregulate the railway freight market was the United States, with the introduction of the Staggers Rail Act in 1980. Some European countries decided to follow suit already before regulation was mandated; among the forerunners were the United Kingdom, Sweden and Germany. The previous research has concentrated only on these countries, which has provided an interesting research gap for this thesis. The Baltic Sea Region consists of countries with different kinds of liberalization paths, including Sweden and Germany, which have been on the frontline, whereas Lithuania and Finland have only one active railway undertaking, the incumbent. The transport market of the European Union is facing further challenges in the near future, due to the Sulphur Directive, oil dependency and the changing structure of European rail networks. In order to improve the accessibility of this peripheral area, further action is required. This research focuses on topics such as the progression of deregulation, barriers to entry, country-specific features, cooperation and internationalization. Based on the research results, it can be stated that the Baltic Sea Region’s railway freight market is expected to change in the future. Further private railway undertakings are anticipated, and these would change the market structure. The realization of European Union’s plans to increase the improved rail network to cover the Baltic States is strongly hoped for, and railway freight market counterparts inside and among countries are starting to enhance their level of cooperation. The Baltic Sea Region countries have several special national characteristics which influence the market and should be taken into account when companies evaluate possible market entry actions. According to thesis interviews, the Swedish market has a strong level of cooperation in the form of an old-boy network, and is supported by a positive attitude of the incumbent towards the private railway undertakings. This has facilitated the entry process of newcomers, and currently the market has numerous operating railway undertakings. A contrary example was found from Poland, where the incumbent sent old rolling stock to the scrap yard rather than sell it to private railway undertakings. The importance of personal relations is highlighted in Russia, followed by the railway market’s strong political bond with politics. Nonetheless, some barriers to entry are shared by the Baltic Sea Region, the main ones being acquisition of rolling stock, bureaucracy and needed investments. The railway freight market is internationalizing, which is perceived via several alliances as well as the increased number of mergers and acquisitions. After deregulation, markets seem to increase the number of railway undertakings at a rather fast pace, but with the passage of time, the larger operators tend to acquire smaller ones. Therefore, it is expected that in a decade’s time, the number of railway undertakings will start to decrease in the deregulation pioneer countries, while the ones coming from behind might still experience an increase. The Russian market is expected to be totally liberalized, and further alliances between the Russian Railways and European railway undertakings are expected to occur. The Baltic Sea Region’s railway freight market is anticipated to improve, and, based on the interviewees’ comments, attract more cargoes from road to rail.
Resumo:
The world’s pace of change is accelerating and new innovations, inventions and technologies come about every day. Change is unavoidable. It is difficult to keep up and even more difficult to prepare for the future. Even though it is not possible to know exactly what will happen in the future, by studying futures people can better anticipate what might lie ahead. By making decisions and realizing the consequences of their choices today, people and governments are able to actively decide how they will act in the future. Both opportunities and pitfalls lie ahead, which encourages actors to make more farsighted decisions. The Baltic Sea region is an interesting area for futures studies. It comprises 11 nations and more than 100 million inhabitants and entails countries with advanced, high-income economies, like Finland, Germany and Denmark, and developing economies, like Russia, Latvia and Lithuania. The western, eastern, northern and southern parts of the region are separated by the Baltic Sea, which at the same time represents a barrier and a facility for trade and travel between the countries belonging to the region The purpose of this study was to uncover the most probable future of transport and logistics in the Baltic Sea region in 2025 by using the Delphi method. Altogether 109 responses were collected in two separate instances from experts in all the Baltic Sea region countries, 56 of whom were defined as academic respondents and 53 of whom business respondents. Only minor differences in the opinions of academic and business experts were discovered, and the larger differences lie between eastern and western response groups. The Baltic Sea region is a very heterogeneous region and the division is clearest between East and West, which differ in political, economic, social, technological and environmental aspects. The probable future of the Baltic Sea region presented in this study is coherent with previous studies on the same subject. The future of the Baltic Sea region in terms of logistics and transport looks quite bright according to the experts who participated in the study. Trade volumes will grow and the importance of logistics and transport to the competitiveness of the region will increase. Respondents from eastern countries seemed to be more optimistic about the future in general. Most differences between opinions could be explained by the gap in technological and infrastructural development between the East and West. As eastern countries are less-developed in some parts of their economies, it is easier for them to improve the technical condition of infrastructure by merely catching up with the western countries.
Resumo:
Advancements in IC processing technology has led to the innovation and growth happening in the consumer electronics sector and the evolution of the IT infrastructure supporting this exponential growth. One of the most difficult obstacles to this growth is the removal of large amount of heatgenerated by the processing and communicating nodes on the system. The scaling down of technology and the increase in power density is posing a direct and consequential effect on the rise in temperature. This has resulted in the increase in cooling budgets, and affects both the life-time reliability and performance of the system. Hence, reducing on-chip temperatures has become a major design concern for modern microprocessors. This dissertation addresses the thermal challenges at different levels for both 2D planer and 3D stacked systems. It proposes a self-timed thermal monitoring strategy based on the liberal use of on-chip thermal sensors. This makes use of noise variation tolerant and leakage current based thermal sensing for monitoring purposes. In order to study thermal management issues from early design stages, accurate thermal modeling and analysis at design time is essential. In this regard, spatial temperature profile of the global Cu nanowire for on-chip interconnects has been analyzed. It presents a 3D thermal model of a multicore system in order to investigate the effects of hotspots and the placement of silicon die layers, on the thermal performance of a modern ip-chip package. For a 3D stacked system, the primary design goal is to maximise the performance within the given power and thermal envelopes. Hence, a thermally efficient routing strategy for 3D NoC-Bus hybrid architectures has been proposed to mitigate on-chip temperatures by herding most of the switching activity to the die which is closer to heat sink. Finally, an exploration of various thermal-aware placement approaches for both the 2D and 3D stacked systems has been presented. Various thermal models have been developed and thermal control metrics have been extracted. An efficient thermal-aware application mapping algorithm for a 2D NoC has been presented. It has been shown that the proposed mapping algorithm reduces the effective area reeling under high temperatures when compared to the state of the art.
Resumo:
Gasification of biomass is an efficient method process to produce liquid fuels, heat and electricity. It is interesting especially for the Nordic countries, where raw material for the processes is readily available. The thermal reactions of light hydrocarbons are a major challenge for industrial applications. At elevated temperatures, light hydrocarbons react spontaneously to form higher molecular weight compounds. In this thesis, this phenomenon was studied by literature survey, experimental work and modeling effort. The literature survey revealed that the change in tar composition is likely caused by the kinetic entropy. The role of the surface material is deemed to be an important factor in the reactivity of the system. The experimental results were in accordance with previous publications on the subject. The novelty of the experimental work lies in the used time interval for measurements combined with an industrially relevant temperature interval. The aspects which are covered in the modeling include screening of possible numerical approaches, testing of optimization methods and kinetic modelling. No significant numerical issues were observed, so the used calculation routines are adequate for the task. Evolutionary algorithms gave a better performance combined with better fit than the conventional iterative methods such as Simplex and Levenberg-Marquardt methods. Three models were fitted on experimental data. The LLNL model was used as a reference model to which two other models were compared. A compact model which included all the observed species was developed. The parameter estimation performed on that model gave slightly impaired fit to experimental data than LLNL model, but the difference was barely significant. The third tested model concentrated on the decomposition of hydrocarbons and included a theoretical description of the formation of carbon layer on the reactor walls. The fit to experimental data was extremely good. Based on the simulation results and literature findings, it is likely that the surface coverage of carbonaceous deposits is a major factor in thermal reactions.