49 resultados para sine fatigue (cyclic loading)
Resumo:
Thermal cutting methods, are commonly used in the manufacture of metal parts. Thermal cutting processes separate materials by using heat. The process can be done with or without a stream of cutting oxygen. Common processes are Oxygen, plasma and laser cutting. It depends on the application and material which cutting method is used. Numerically-controlled thermal cutting is a cost-effective way of prefabricating components. One design aim is to minimize the number of work steps in order to increase competitiveness. This has resulted in the holes and openings in plate parts manufactured today being made using thermal cutting methods. This is a problem from the fatigue life perspective because there is local detail in the as-welded state that causes a rise in stress in a local area of the plate. In a case where the static utilization of a net section is full used, the calculated linear local stresses and stress ranges are often over 2 times the material yield strength. The shakedown criteria are exceeded. Fatigue life assessment of flame-cut details is commonly based on the nominal stress method. For welded details, design standards and instructions provide more accurate and flexible methods, e.g. a hot-spot method, but these methods are not universally applied to flame cut edges. Some of the fatigue tests of flame cut edges in the laboratory indicated that fatigue life estimations based on the standard nominal stress method can give quite a conservative fatigue life estimate in cases where a high notch factor was present. This is an undesirable phenomenon and it limits the potential for minimizing structure size and total costs. A new calculation method is introduced to improve the accuracy of the theoretical fatigue life prediction method of a flame cut edge with a high stress concentration factor. Simple equations were derived by using laboratory fatigue test results, which are published in this work. The proposed method is called the modified FAT method (FATmod). The method takes into account the residual stress state, surface quality, material strength class and true stress ratio in the critical place.
Resumo:
The overall objective of the thesis is to design a robot chassis frame which is a bearing structure of a vehicle supporting all mechanical components and providing structure and stability. Various techniques and scientific principles were used to design a chassis frame.Design principles were applied throughout the process. By using Solid-Works software,virtual models was made for chassis frame. Chassis frame of overall dimension 1597* 800*950 mm3 was designed. Center of mass lieson 1/3 of the length from front wheel at height 338mm in the symmetry plane. Overall weight of the chassis frame is 80.12kg. Manufacturing drawing is also provided. Additionally,structural analysis was done in FEMAP which gives the busting result for chassis design by taking into consideration stress and deflection on different kind of loading resembling real life case. On the basis of simulated result, selected material was verified. Resulting design is expected to perform its intended function without failure. As a suggestion for further research, additional fatigue analysis and proper dynamic analysis can be conducted to make the study more robust.
Resumo:
In this thesis was performed comprehensive study about the convenience of scallops in plate structures. A literature review was performed and lack of knowledge was fulfilled with fatigue tests performed in the laboratory of Steel Structures at the Lappeenranta University of Technology and with finite element method. The aim of this thesis was to produce design guidance for the use of scallops for different structural details and different loading conditions. An additional aim was to include more precise instructions for scallop design to produce good fatigue resistance and appropriate manufacturing quality. The literature review was performed searching bridge engineering and maritime standards and design guides and studies from scientific databases and reference lists from the literature of this field. Fatigue tests were used to research the effect of using scallops or not using scallops to fatigue strength of bracket specimen. Tests were performed on three specimens with different scallop radii and to five specimens without scallops with different weld penetration depths. Finite element method using solid elements, symmetry and submodels was used to determine stress concentration factors for I-beams with scallops. Stresses were defined with hot spot stress method. Choosing to use a scallop or not in the structure is affected by many factors, such as structural and loading conditions and manufacturability. As a rule of thumb, scallops should be avoided because those cause stress concentration points to the structure and take a lot of time to manufacture. When scallops are not used, good quality welding should be provided and full weld penetration is recommended to be used in load carrying corner weld areas. In some cases, it is advisable to use scallops. In that case, circular scallops are recommended to be used and radius should be chosen from fatigue strength or manufacturing point of view.
Resumo:
Diplomityössä tutkitaan hitsatun duplex-teräksen, laatu: EN 1.4462 (Outokumpu laatu 2205) väsymislujuutta. Tutkimusmetodologia noudattaa sekä kokeellisia että laskennallisia menetelmiä. Kokeelliset menetelmät sisältävät hitsatun teräksen väsytystestaukset laboratoriossa, hitsausten jälkikäsittelyt (HiFIT) sekä perusaineelle ja hitseille tehtävät metallurgiset tutkimukset. Väsytyskokeista saatavia tuloksia verrataan kansainvälisen hitsausinstituutin (IIW) vahvistamiin rakennekohtaisiin standardeihin sekä kirjallisuudessa esiintyviin tutkimustuloksiin. Laskennalliset menetelmät sisältävät vertailulaskelmia tehollisen lovijännityksen (ENS) menetelmää hyödyntäen. Tehollisen lovijännityksen menetelmässä liitoksissa vaikuttavat teholliset lovijännitykset selvitetään elementtimenetelmän (FEM) avulla. Tulokset vahvistavat, että hitsauksella ja hitsausten jälkikäsittelyllä on suuri merkitys rakenteen kestoikään. Suurin osa väsytyskokeiden tuloksista osoitti parempia väsymiskestävyyden arvoja kuin rakennekohtaiset standardit, mutta liitosten liitosvirheiden todettiin heikentävän väsytyskestävyyttä. Jälkikäsittelyiden todettiin parantavan liitosten väsymiskestävyyden tuloksia ja todettiin tulosten olevan hyödynnettävissä mitoituksessa.