51 resultados para plasma welding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis the effect of focal point parameters in fiber laser welding of structural steel is studied. The goal is to establish relations between laser power, focal point diameter and focal point position with the resulting quality, weld-bead geometry and hardness of the welds. In the laboratory experiments, AB AH36 shipbuilding steel was welded in an I-butt joint configuration using IPG YLS-10000 continuous wave fiber laser. The quality of the welds produced were evaluated based on standard SFS-EN ISO 13919-1. The weld-bead geometry was defined from the weld cross-sections and Vickers hardness test was used to measure hardness's from the middle of the cross-sections. It was shown that all the studied focal point parameters have an effect on the quality, weld-bead geometry and hardness of the welds produced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser beam welding (LBW) is applicable for a wide range of industrial sectors and has a history of fifty years. However, it is considered an unusual method with applications typically limited to welding of thin sheet metal. With a new generation of high power lasers there has been a renewed interest in thick section LBW (also known as keyhole laser welding). There was a growing body of publications during 2001-2011 that indicates an increasing interest in laser welding for many industrial applications, and in last ten years, an increasing number of studies have examined the ways to increase the efficiency of the process. Expanding the thickness range and efficiency of LBW makes the process a possibility for industrial applications dealing with thick metal welding: shipbuilding, offshore structures, pipelines, power plants and other industries. The advantages provided by LBW, such as high process speed, high productivity, and low heat input, may revolutionize these industries and significantly reduce the process costs. The research to date has focused on either increasing the efficiency via optimizing process parameters, or on the process fundamentals, rather than on process and workpiece modifications. The argument of this thesis is that the efficiency of the laser beam process can be increased in a straightforward way in the workshop conditions. Throughout this dissertation, the term “efficiency” is used to refer to welding process efficiency, specifically, an increase in efficiency refers an increase in weld’s penetration depth without increasing laser power level or decreasing welding speed. These methods are: modifications of the workpiece – edge surface roughness and air gap between the joining plates; modification of the ambient conditions – local reduction of the pressure in the welding zone; modification of the welding process – preheating of the welding zone. Approaches to improve the efficiency are analyzed and compared both separately and combined. These experimentally proven methods confirm previous findings and contribute additional evidence which expand the opportunities for laser beam welding applications. The focus of this research was primarily on the effects of edge surface roughness preparation and pre-set air gap between the plates on weld quality and penetration depth. To date, there has been no reliable evidence that such modifications of the workpiece give a positive effect on the welding efficiency. Other methods were tested in combination with the two methods mentioned above. The most promising - combining with reduced pressure method - resulted in at least 100% increase in efficiency. The results of this thesis support the idea that joining those methods in one modified process will provide the modern engineering with a sufficient tool for many novel applications with potential benefits to a range of industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämä diplomityö arvioi hitsauksen laadunhallintaohjelmistomarkkinoiden kilpailijoita. Kilpailukenttä on uusi ja ei ole tarkkaa tietoa siitä minkälaisia kilpailijoita on markkinoilla. Hitsauksen laadunhallintaohjelmisto auttaa yrityksiä takaamaan korkean laadun. Ohjelmisto takaa korkean laadun varmistamalla, että hitsaaja on pätevä, hän noudattaa hitsausohjeita ja annettuja parametreja. Sen lisäksi ohjelmisto kerää kaiken tiedon hitsausprosessista ja luo siitä vaadittavat dokumentit. Diplomityön teoriaosuus muodostuu kirjallisuuskatsauksesta ratkaisuliike-toimintaan, kilpailija-analyysin ja kilpailuvoimien teoriaan sekä hitsauksen laadunhallintaan. Työn empiriaosuus on laadullinen tutkimus, jossa tutkitaan kilpailevia hitsauksen laadunhallintaohjelmistoja ja haastatellaan ohjelmistojen käyttäjiä. Diplomityön tuloksena saadaan uusi kilpailija-analyysimalli hitsauksen laadunhallintaohjelmistoille. Mallin avulla voidaan arvostella ohjelmistot niiden tarjoamien primääri- ja sekundääriominaisuuksien perusteella. Toiseksi tässä diplomityössä analysoidaan nykyinen kilpailijatilanne hyödyntämällä juuri kehitettyä kilpailija-analyysimallia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The construction of offshore structures, equipment and devices requires a high level of mechanical reliability in terms of strength, toughness and ductility. One major site for mechanical failure, the weld joint region, needs particularly careful examination, and weld joint quality has become a major focus of research in recent times. Underwater welding carried out offshore faces specific challenges affecting the mechanical reliability of constructions completed underwater. The focus of this thesis is on improvement of weld quality of underwater welding using control theory. This research work identifies ways of optimizing the welding process parameters of flux cored arc welding (FCAW) during underwater welding so as to achieve desired weld bead geometry when welding in a water environment. The weld bead geometry has no known linear relationship with the welding process parameters, which makes it difficult to determine a satisfactory weld quality. However, good weld bead geometry is achievable by controlling the welding process parameters. The doctoral dissertation comprises two sections. The first part introduces the topic of the research, discusses the mechanisms of underwater welding and examines the effect of the water environment on the weld quality of wet welding. The second part comprises four research papers examining different aspects of underwater wet welding and its control and optimization. Issues considered include the effects of welding process parameters on weld bead geometry, optimization of FCAW process parameters, and design of a control system for the purpose of achieving a desired bead geometry that can ensure a high level of mechanical reliability in welded joints of offshore structures. Artificial neural network systems and a fuzzy logic controller, which are incorporated in the control system design, and a hybrid of fuzzy and PID controllers are the major control dynamics used. This study contributes to knowledge of possible solutions for achieving similar high weld quality in underwater wet welding as found with welding in air. The study shows that carefully selected steels with very low carbon equivalent and proper control of the welding process parameters are essential in achieving good weld quality. The study provides a platform for further research in underwater welding. It promotes increased awareness of the need to improve the quality of underwater welding for offshore industries and thus minimize the risk of structural defects resulting from poor weld quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Chinese welding industry is growing every year due to rapid development of the Chinese economy. Increasingly, companies around the world are looking to use Chinese enterprises as their cooperation partners. However, the Chinese welding industry also has its weaknesses, such as relatively low quality and weak management. A modern, advanced welding management system appropriate for local socio-economic conditions is required to enable Chinese enterprises to enhance further their business development. The thesis researches the design and implementation of a new welding quality management system for China. This new system is called ‗welding production quality control management model in China‘ (WQMC). Constructed on the basis of analysis of a survey and in-company interviews, the welding management system comprises the following different elements and perspectives: a ‗Localized congenital existing problem resolution strategies‘ (LCEPRS) database, a ‗human factor designed training system‘ (HFDT) training strategy, the theory of modular design, ISO 3834 requirements, total welding management (TWM), and lean manufacturing (LEAN) theory. The methods used in the research are literature review, questionnaires, interviews, and the author‘s model design experiences and observations, i.e. the approach is primarily qualitative and phenomenological. The thesis describes the design and implementation of a HFDT strategy in Chinese welding companies. Such training is an effective way to increase employees‘ awareness of quality and issues associated with quality assurance. The study identified widely existing problems in the Chinese welding industry and constructed a LCEPRS database that can be used in efforts to mitigate and avoid common problems. The work uses the theory of modular design, TWM and LEAN as tools for the implementation of the WQMC system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, an infrared thermography based sensor was studied with regard to usability and the accuracy of sensor data as a weld penetration signal in gas metal arc welding. The object of the study was to evaluate a specific sensor type which measures thermography from solidified weld surface. The purpose of the study was to provide expert data for developing a sensor system in adaptive metal active gas (MAG) welding. Welding experiments with considered process variables and recorded thermal profiles were saved to a database for further analysis. To perform the analysis within a reasonable amount of experiments, the process parameter variables were gradually altered by at least 10 %. Later, the effects of process variables on weld penetration and thermography itself were considered. SFS-EN ISO 5817 standard (2014) was applied for classifying the quality of the experiments. As a final step, a neural network was taught based on the experiments. The experiments show that the studied thermography sensor and the neural network can be used for controlling full penetration though they have minor limitations, which are presented in results and discussion. The results are consistent with previous studies and experiments found in the literature.