51 resultados para moving object classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Questions concerning perception are as old as the field of philosophy itself. Using the first-person perspective as a starting point and philosophical documents, the study examines the relationship between knowledge and perception. The problem is that of how one knows what one immediately perceives. The everyday belief that an object of perception is known to be a material object on grounds of perception is demonstrated as unreliable. It is possible that directly perceived sensible particulars are mind-internal images, shapes, sounds, touches, tastes and smells. According to the appearance/reality distinction, the world of perception is the apparent realm, not the real external world. However, the distinction does not necessarily refute the existence of the external world. We have a causal connection with the external world via mind-internal particulars, and therefore we have indirect knowledge about the external world through perceptual experience. The research especially concerns the reasons for George Berkeley’s claim that material things are mind-dependent ideas that really are perceived. The necessity of a perceiver’s own qualities for perceptual experience, such as mind, consciousness, and the brain, supports the causal theory of perception. Finally, it is asked why mind-internal entities are present when perceiving an object. Perception would not directly discern material objects without the presupposition of extra entities located between a perceiver and the external world. Nevertheless, the results show that perception is not sufficient to know what a perceptual object is, and that the existence of appearances is necessary to know that the external world is being perceived. However, the impossibility of matter does not follow from Berkeley’s theory. The main result of the research is that singular knowledge claims about the external world never refer directly and immediately to the objects of the external world. A perceiver’s own qualities affect how perceptual objects appear in a perceptual situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Object detection is a fundamental task of computer vision that is utilized as a core part in a number of industrial and scientific applications, for example, in robotics, where objects need to be correctly detected and localized prior to being grasped and manipulated. Existing object detectors vary in (i) the amount of supervision they need for training, (ii) the type of a learning method adopted (generative or discriminative) and (iii) the amount of spatial information used in the object model (model-free, using no spatial information in the object model, or model-based, with the explicit spatial model of an object). Although some existing methods report good performance in the detection of certain objects, the results tend to be application specific and no universal method has been found that clearly outperforms all others in all areas. This work proposes a novel generative part-based object detector. The generative learning procedure of the developed method allows learning from positive examples only. The detector is based on finding semantically meaningful parts of the object (i.e. a part detector) that can provide additional information to object location, for example, pose. The object class model, i.e. the appearance of the object parts and their spatial variance, constellation, is explicitly modelled in a fully probabilistic manner. The appearance is based on bio-inspired complex-valued Gabor features that are transformed to part probabilities by an unsupervised Gaussian Mixture Model (GMM). The proposed novel randomized GMM enables learning from only a few training examples. The probabilistic spatial model of the part configurations is constructed with a mixture of 2D Gaussians. The appearance of the parts of the object is learned in an object canonical space that removes geometric variations from the part appearance model. Robustness to pose variations is achieved by object pose quantization, which is more efficient than previously used scale and orientation shifts in the Gabor feature space. Performance of the resulting generative object detector is characterized by high recall with low precision, i.e. the generative detector produces large number of false positive detections. Thus a discriminative classifier is used to prune false positive candidate detections produced by the generative detector improving its precision while keeping high recall. Using only a small number of positive examples, the developed object detector performs comparably to state-of-the-art discriminative methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid movement in cells occurs by a variety of methods. Lipids diffuse freely along the lateral plane of a membrane and can translocate between the lipid leaflets, either spontaneously or with the help of enzymes. Lipid translocation between the different cellular compartments predominantly takes place through vesicular transport. Specialized lipid transport proteins (LTPs) have also emerged as important players in lipid movement, as well as other cellular processes. In this thesis we have studied the glycolipid transport protein (GLTP), a protein that transports glycosphingolipids (GSLs). While the in vitro properties of GLTP have been well characterized, its cell biological role remains elusive. By altering GSL and GLTP levels in cells, we have extracted clues towards the protein's function. Based on the results presented in this thesis and in previous works, we hypothesize that GLTP is involved in the GSL homeostasis in cells. GLTP most likely functions as a transporter or sensor of newly synthesized glucosylceramide (GlcCer), at or near the site of GlcCer synthesis. GLTP also seems to be involved in the synthesis of globotriacylceramide, perhaps in a manner that is similar to that of the fourphosphate adaptor protein 2, another GlcCer-transporting LTP. Additionally, we have developed and studied a novel method of introducing ceramides to cells, using a solvent-free approach. Ceramides are important lipids that are implicated in several cellular functions. Their role as proapoptotic molecules is particularly evident. Ceramides form stable bilayer structures when complexed with cholesterol phosphocholine (CholPC), a large-headgroup sterol. By adding ceramide/CholPC complexes to the growth medium, various chain length ceramides were successfully delivered to cells in culture. The uptake rate was dependent on the chain length of the ceramide, where shorter lipids were internalized more quickly. The rate of uptake also determined how the cells metabolised the ceramides. Faster uptake favored conversion of ceramide to GlcCer, whereas slower delivery resulted mainly in breakdown of the lipid.