50 resultados para Visual standards


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advancements in information technology have made it possible for organizations to gather and store vast amounts of data of their customers. Information stored in databases can be highly valuable for organizations. However, analyzing large databases has proven to be difficult in practice. For companies in the retail industry, customer intelligence can be used to identify profitable customers, their characteristics, and behavior. By clustering customers into homogeneous groups, companies can more effectively manage their customer base and target profitable customer segments. This thesis will study the use of the self-organizing map (SOM) as a method for analyzing large customer datasets, clustering customers, and discovering information about customer behavior. Aim of the thesis is to find out whether the SOM could be a practical tool for retail companies to analyze their customer data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the global phenomenon, the aging population becomes a critical issue. Data and information concerning elderly citizens are increasing and are not well organized. In addition, these unstructured data and information cause the problems for decision makers. Since we live in a digital world, Information Technology is considered to be a tool in order to solve problems. Data, information, and knowledge are crucial components to facilitate success in IT service system. Therefore, it is necessary to study how to organize or to govern data from various sources related elderly citizens. The research is conducted due to the fact that there is no internationally accepted holistic framework for governance of data. The research limits the scope to study on the healthcare domain; however, the results can be applied to the other areas. The research starts with an ongoing research of Dahlberg and Nokkala (2015) as a theory. It explains the classification of existing data sources and their characteristics with the focus on managerial perspectives. Then the studies of existing frameworks at international and national level organizations have been performed to show the current frameworks, which have been used and are useful in compiling data on elderly citizens. The international organizations in this research are selected based on their reputations and the reliability to obtain information. The selected countries at national level provide different point of views between two countries. Australia is a forerunner in IT governance while Thailand is the country which the author has familiar knowledge of the current situation. Considered the discussions of frameworks at international and national organizations level illustrate the main characteristics of each framework. At international organization level gives precedence to the interoperability of exchanging data and information between different parties. Whereas at national level shows the importance of the acknowledgement of using frameworks throughout the country in order to make the frameworks to be effective. After the studies of both international and national organization levels, the thesis shows the summarized tables to answer the fitness to the proposed framework by Dahlberg and Nokkala whether the framework help to consolidate data from various sources with different formats, hierarchies, structures, velocities, and other attributes of data storages. In addition, suggestions and recommendations will be proposed for the future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kandidaatintyö tehtiin osana PulpVision-tutkimusprojektia, jonka tarkoituksena on kehittää kuvapohjaisia laskenta- ja luokittelumetodeja sellun laaduntarkkailuun paperin valmistuksessa. Tämän tutkimusprojektin osana on aiemmin kehitetty metodi, jolla etsittiin kaarevia rakenteita kuvista, ja tätä metodia hyödynnettiin kuitujen etsintään kuvista. Tätä metodia käytettiin lähtökohtana kandidaatintyölle. Työn tarkoituksena oli tutkia, voidaanko erilaisista kuitukuvista laskettujen piirteiden avulla tunnistaa kuvassa olevien kuitujen laji. Näissä kuitukuvissa oli kuituja neljästä eri puulajista ja yhdestä kasvista. Nämä lajit olivat akasia, koivu, mänty, eukalyptus ja vehnä. Jokaisesta lajista valittiin 100 kuitukuvaa ja nämä kuvat jaettiin kahteen ryhmään, joista ensimmäistä käytettiin opetusryhmänä ja toista testausryhmänä. Opetusryhmän avulla jokaiselle kuitulajille laskettiin näitä kuvaavia piirteitä, joiden avulla pyrittiin tunnistamaan testausryhmän kuvissa olevat kuitulajit. Nämä kuvat oli tuottanut CEMIS-Oulu (Center for Measurement and Information Systems), joka on mittaustekniikkaan keskittynyt yksikkö Oulun yliopistossa. Yksittäiselle opetusryhmän kuitukuvalle laskettiin keskiarvot ja keskihajonnat kolmesta eri piirteestä, jotka olivat pituus, leveys ja kaarevuus. Lisäksi laskettiin, kuinka monta kuitua kuvasta löydettiin. Näiden piirteiden eri yhdistelmien avulla testattiin tunnistamisen tarkkuutta käyttämällä k:n lähimmän naapurin menetelmää ja Naiivi Bayes -luokitinta testausryhmän kuville. Testeistä saatiin lupaavia tuloksia muun muassa pituuden ja leveyden keskiarvoja käytettäessä saavutettiin jopa noin 98 %:n tarkkuus molemmilla algoritmeilla. Tunnistuksessa kuitujen keskimäärinen pituus vaikutti olevan kuitukuvia parhaiten kuvaava piirre. Käytettyjen algoritmien välillä ei ollut suurta vaihtelua tarkkuudessa. Testeissä saatujen tulosten perusteella voidaan todeta, että kuitukuvien tunnistaminen on mahdollista. Testien perusteella kuitukuvista tarvitsee laskea vain kaksi piirrettä, joilla kuidut voidaan tunnistaa tarkasti. Käytetyt lajittelualgoritmit olivat hyvin yksinkertaisia, mutta ne toimivat testeissä hyvin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Convolutional Neural Networks (CNN) have become the state-of-the-art methods on many large scale visual recognition tasks. For a lot of practical applications, CNN architectures have a restrictive requirement: A huge amount of labeled data are needed for training. The idea of generative pretraining is to obtain initial weights of the network by training the network in a completely unsupervised way and then fine-tune the weights for the task at hand using supervised learning. In this thesis, a general introduction to Deep Neural Networks and algorithms are given and these methods are applied to classification tasks of handwritten digits and natural images for developing unsupervised feature learning. The goal of this thesis is to find out if the effect of pretraining is damped by recent practical advances in optimization and regularization of CNN. The experimental results show that pretraining is still a substantial regularizer, however, not a necessary step in training Convolutional Neural Networks with rectified activations. On handwritten digits, the proposed pretraining model achieved a classification accuracy comparable to the state-of-the-art methods.