60 resultados para Sub-barrier fusion enhancement
Resumo:
Variantti B.
Resumo:
Variantti A.
Resumo:
Variantti B.
Resumo:
Dedikaatio: Fredrika Wilhelmina Stjernvall född Charpentier [ruots.].
Resumo:
Variantti B.
Resumo:
Arkit: A-B4.
Resumo:
Invokaatio: Favente Jehovâ.
Resumo:
This master’s thesis was made in order to gain answers to the question of how the integration of the marketing communications and the decision making related to it in a geographically dispersed service organization could be improved in a situation where an organization has gone through a merger. The effects of the organizational design dimensions towards the integration of the marketing communications and the decision making related to it was the main focus. A case study as a research strategy offered a perfect frames for an exploratory study and the data collection was conducted by semi-structured interviews and observing. The main finding proved that from the chosen design dimensions, decentralization, coordination and power, could be found specific factors that in a geographically dispersed organization are affecting the integration of the marketing communications negatively. The effects can be seen mostly in the decision making processes, roles and in the division of responsibility, which are affecting the other dimensions and by this, the integration. In a post-merger situation, the coordination dimension and especially the information asymmetry and the information flow seem to have a largest affect towards the integration of the marketing communications. An asymmetric information distribution with the lack of business and marketing education resulted in low self-assurance and at the end in fragmented management and to the inability to set targets and make independent decisions. As conclusions it can be stated, that with the organizational design dimensions can the effects of a merger towards the integration process of the marketing communications to be evaluated.
Resumo:
Weldability of powder bed fusion (PBF) fabricated components has come to discussion in past two years due to resent developments in the PBF technology and limited size of the machines used in the fabrication process. This study concentrated on effects of energy input of welding on mechanical properties and microstructural features of welds between PBF fabricated stainless steel 316L sheets and cold rolled sheet metal of same composition by the means of destructive testing and microscopic analysis. Optical fiber diameter, laser power and welding speed were varied during the experiments that were executed following one variable at a time (OVAT) method. One of the problems of welded PBF fabricated components has been lower elongations at break comparing to conventionally manufactured components. Decreasing energy input of the laser keyhole welding decreased elongations at break of the welded specimens. Ultimate tensile strengths were not affected significantly by the energy input of the welding, but fracturing of the specimens welded using high energy input occurred from the weld metal. Fracturing of the lower energy input welds occurred from the PBF fabricated base metal. Energy input was found to be critical factor for mechanical properties of the welds. Multioriented grain growth and formation of neck at fusion zone boundary on the cold rolled side of the weld was detected and suspected to be result from weld pool flows caused by differences in molten weld pool behaviour between the PBF fabricated and cold rolled sides of the welds.
Resumo:
The increasing use of energy, food, and materials by the growing population in the world is leading to the situation where alternative solutions from renewable carbon resources are sought after. The growing use of plastics depends on the raw-oil production while oil refining are politically governed and required for the polymer manufacturing is not sustainable in terms of carbon footprint. The amount of packaging is also increasing. Packaging is not only utilising cardboard and paper, but also plastics. The synthetic petroleum-derived plastics and inner-coatings in food packaging can be substituted with polymeric material from the renewable resources. The trees in Finnish forests constitute a huge resource, which ought to be utilised more effectively than it is today. One underutilised component of the forests is the wood-derived hemicelluloses, although Spruce Oacetyl-galactoglucomannans (GGMs) have previously shown high potential for material applications and can be recovered in large scale. Hemicelluloses are hydrophilic in their native state, which restrains the use of them for food packaging as non-dry item. To cope with this challenge, we intended to make GGMs more hydrophobic or amphiphilic by chemical grafting and consequently with the focus of using them for barrier applications. Methods of esterification with anhydrides and cationic etherification with a trimethyl ammonium moiety were established. A method of controlled synthesis to obtain the desired properties by the means of altering temperature, reaction time, the quantity of the reagent, and even the solvent for purification of the products was developed. Numerous analytical tools, such as NMR, FTIR, SEC-MALLS/RI, MALDI-TOF-MS, RP-HPLC and polyelectrolyte titration were used to evaluate the products from different perspectives and to acquire parallel proofs of their chemical structure. Modified GGMs with different degree of substitution and the correlating level of hydrophobicity was applied as coatings on cartonboard and on nanofibrillated cellulose-GGM films to exhibit barrier functionality. The water dispersibility in processing was maintained with GGM esters with low DS. The use of chemically functionalised GGM was evaluated for the use as barriers against water, oxygen and grease for the food packaging purposes. The results show undoubtedly that GGM derivatives exhibit high potential to function as a barrier material in food packaging.
Resumo:
A quadcopter is a helicopter with four rotors, which is mechanically simple device, but requires complex electrical control for each motor. Control system needs accurate information about quadcopter’s attitude in order to achieve stable flight. The goal of this bachelor’s thesis was to research how this information could be obtained. Literature review revealed that most of the quadcopters, whose source-code is available, use a complementary filter or some derivative of it to fuse data from a gyroscope, an accelerometer and often also a magnetometer. These sensors combined are called an Inertial Measurement Unit. This thesis focuses on calculating angles from each sensor’s data and fusing these with a complementary filter. On the basis of literature review and measurements using a quadcopter, the proposed filter provides sufficiently accurate attitude data for flight control system. However, a simple complementary filter has one significant drawback – it works reliably only when the quadcopter is hovering or moving at a constant speed. The reason is that an accelerometer can’t be used to measure angles accurately if linear acceleration is present. This problem can be fixed using some derivative of a complementary filter like an adaptive complementary filter or a Kalman filter, which are not covered in this thesis.
Resumo:
Hemicelluloses are potential raw material for several items produced in future wood-based biorefineries. One possible method for recovering hemicelluloses from wood extracts is ultrafiltration (UF). However, low filtration capacities and severe fouling restrict the use of tight UF membranes in the treatment of wood extracts. The lack of suitable commercial membranes creates a need for pretreatment which would decrease fouling and increase the filtration capacity. This thesis focuses on the evaluation of the possibility to improve the filtration capacity and decrease fouling with the pretreatment of wood extracts. Methods which remove harmful compounds and methods which degrade them are studied, as well as combinations of the methods. The tested pretreatments have an influence on both the concentration of different compounds and the molecular mass distribution of the compounds in the extract. This study revealed that in addition to which kind of compounds were removed, also the change in molecular size distribution affected the filtration capacity significantly. It was shown that the most harmful compounds for the filtration capacity of the hydrophobic 5 kDa membrane were the ones capable of permeating the membrane and fouling also the inner membrane structure. Naturally, the size of the most harmful compounds depends on the used UF membrane and is thus case-specific. However, in the choice of the pretreatment method, the focus should be on the removal of harmful compound sizes rather than merely on the total amount of removed foulants. The results proved that filtration capacity can be increased with both adsorptive and oxidative pretreatments even by hundreds of per cents. For instance, the use of XAD7 and XAD16 adsorbents increased the average flux in the UF of a birch extract from nearly zero to 107 kg/(m2h) and 175 kg/(m2h), respectively. In the treatment of a spruce extract, oxidation by pulsed corona discharge (PCD) increased the flux in UF from 46 kg/(m2h) to 158 kg/(m2h). Moreover, when a birch extract batch was treated with laccase enzyme, the flux in UF increased from 15 kg/(m2h) to 36 kg/(m2h). However, fouling was decreased only by adsorptive pretreatment while oxidative methods had a negligible or even negative impact on it. This demonstrates that filtration capacity and fouling are affected by different compounds and mechanisms. The results of this thesis show that filtration capacity can be improved and fouling decreased through appropriate pretreatment. However, the choice of the best possible pretreatment is case-specific and depends on the wood extract and the membrane used. Finding the best option requires information on the extract content and membrane characteristics as well as on the filtration performance of the membrane in the prevailing conditions and a multivariate approach. On the basis of this study, it can be roughly concluded that adsorptive pretreatment improves the filtration capacity and decreases fouling rather reliably, but it may lead to significant hemicellulose losses. Oxidation reduces the loss of valuable hemicelluloses and could improve the filtration capacity, but fouling challenges may remain. Combining oxidation with adsorptive pretreatment was not a solution for avoiding hemicellulose losses in the tested cases.
Resumo:
Julkaisuvuosi nimekkeestä.