48 resultados para Robot Operation System (ROS)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently widely accepted consensus is that greenhouse gas emissions produced by the mankind have to be reduced in order to avoid further global warming. The European Union has set a variety of CO2 reduction and renewable generation targets for its member states. The current energy system in the Nordic countries is one of the most carbon free in the world, but the aim is to achieve a fully carbon neutral energy system. The objective of this thesis is to consider the role of nuclear power in the future energy system. Nuclear power is a low carbon energy technology because it produces virtually no air pollutants during operation. In this respect, nuclear power is suitable for a carbon free energy system. In this master's thesis, the basic characteristics of nuclear power are presented and compared to fossil fuelled and renewable generation. Nordic energy systems and different scenarios in 2050 are modelled. Using models and information about the basic characteristics of nuclear power, an opinion is formed about its role in the future energy system in Nordic countries. The model shows that it is possible to form a carbon free Nordic energy system. Nordic countries benefit from large hydropower capacity which helps to offset fluctuating nature of wind power. Biomass fuelled generation and nuclear power provide stable and predictable electricity throughout the year. Nuclear power offers better energy security and security of supply than fossil fuelled generation and it is competitive with other low carbon technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fertilizer plant’s process waters contain high concentrations of nitrogen compounds, such as ammonium and nitrate. Phosphorus and fluorine, which originate from phosphoric acid and rock phosphate (apatite) used in fertilizer production, are also present. Phosphorus and nitrogen are the primary nutrients causing eutrophication of surface waters. At fertilizer plant process waters are held in closed internal circulation. In a scrubber system process waters are used for washing exhaust gases from fertilizer reactors and dry gases from granulation drums as well as for cooling down the fertilizer slurry in neutralization reactor. Solids in process waters are separated in an inclined plate settler by gravitational sedimentation. However, the operation of inclined plate settler has been inadequate. The aim of this thesis was to intensify the operation of inclined plate settler and thus the solids separation e.g. through coagulation and/or flocculation process. Chemical precipitation was studied to reduce the amount of dissolved species in process waters. Specific interest was in precipitation of nitrogen, phosphorus, and fluorine containing specimens. Amounts of phosphorus and fluorine were reduced significantly by chemical precipitation. When compared to earlier studies, annual chemical costs were almost eight times lower. Instead, nitrogen compounds are readily dissolved in water, thus being difficult to remove by precipitation. Possible alternative techniques for nitrogen removal are adsorption, ion exchange, and reverse osmosis. Settling velocities of pH adjusted and flocculated process waters were sufficient for the operation of inclined plate settler. Design principles of inclined plate settler are also presented. In continuation studies, flow conditions in inclined plate settler should be modelled with computational fluid dynamics and suitability of adsorbents, ion exchange resins, and membranes should be studied in laboratory scale tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in power electronics technology have made it possible to develop competitive and reliable low-voltage DC (LVDC) distribution networks. Further, islanded microgrids—isolated small-scale localized distribution networks— have been proposed to reliably supply power using distributed generations. However, islanded operations face many issues such as power quality, voltage regulation, network stability, and protection. In this thesis, an energy management system (EMS) that ensures efficient energy and power balancing and voltage regulation has been proposed for an LVDC island network utilizing solar panels for electricity production and lead-acid batteries for energy storage. The EMS uses the master/slave method with robust communication infrastructure to control the production, storage, and loads. The logical basis for the EMS operations has been established by proposing functionalities of the network components as well as by defining appropriate operation modes that encompass all situations. During loss-of-powersupply periods, load prioritizations and disconnections are employed to maintain the power supply to at least some loads. The proposed EMS ensures optimal energy balance in the network. A sizing method based on discrete-event simulations has also been proposed to obtain reliable capacities of the photovoltaic array and battery. In addition, an algorithm to determine the number of hours of electric power supply that can be guaranteed to the customers at any given location has been developed. The successful performances of all the proposed algorithms have been demonstrated by simulations.