53 resultados para Lab-On-A-Chip Devices
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
The objective of this work was to study the effects of partial removal of wood hemicelluloses on the properties of kraft pulp.The work was conducted by extracting hemicelluloses (1) by a softwood chip pretreatment process prior to kraft pulping, (2) by alkaline extraction from bleached birch kraft pulp, and (3) by enzymatic treatment, xylanase treatment in particular, of bleached birch kraft pulp. The qualitative and quantitative changes in fibers and paper properties were evaluated. In addition, the applicability of the extraction concepts and hemicellulose-extracted birch kraft pulp as a raw material in papermaking was evaluated in a pilot-scale papermaking environment. The results showed that each examined hemicellulose extraction method has its characteristic effects on fiber properties, seen as differences in both the physical and chemical nature of the fibers. A prehydrolysis process prior to the kraft pulping process offered reductions in cooking time, bleaching chemical consumption and produced fibers with low hemicellulose content that are more susceptible to mechanically induced damages and dislocations. Softwood chip pretreatment for hemicellulose recovery prior to cooking, whether acidic or alkaline, had an impact on the physical properties of the non-refined and refined pulp. In addition, all the pretreated pulps exhibited slower beating response than the unhydrolyzed reference pulp. Both alkaline extraction and enzymatic (xylanase) treatment of bleached birch kraft pulp fibers indicated very selective hemicellulose removal, particularly xylan removal. Furthermore, these two hemicellulose-extracted birch kraft pulps were utilized in a pilot-scale papermaking environment in order to evaluate the upscalability of the extraction concepts. Investigations made using pilot paper machine trials revealed that some amount of alkalineextracted birch kraft pulp, with a 24.9% reduction in the total amount of xylan, could be used in the papermaking stock as a mixture with non-extracted pulp when producing 75 g/m2 paper. For xylanase-treated fibers there were no reductions in the mechanical properties of the 180 g/m2 paper produced compared to paper made from the control pulp, although there was a 14.2% reduction in the total amount of xylan in the xylanase-treated pulp compared to the control birch kraft pulp. This work emphasized the importance of the hemicellulose extraction method in providing new solutions to create functional fibers and in providing a valuable hemicellulose co-product stream. The hemicellulose removal concept therefore plays an important role in the integrated forest biorefinery scenario, where the target is to the co-production of hemicellulose-extracted pulp and hemicellulose-based chemicals or fuels.
Resumo:
In this work, the feasibility of the floating-gate technology in analog computing platforms in a scaled down general-purpose CMOS technology is considered. When the technology is scaled down the performance of analog circuits tends to get worse because the process parameters are optimized for digital transistors and the scaling involves the reduction of supply voltages. Generally, the challenge in analog circuit design is that all salient design metrics such as power, area, bandwidth and accuracy are interrelated. Furthermore, poor flexibility, i.e. lack of reconfigurability, the reuse of IP etc., can be considered the most severe weakness of analog hardware. On this account, digital calibration schemes are often required for improved performance or yield enhancement, whereas high flexibility/reconfigurability can not be easily achieved. Here, it is discussed whether it is possible to work around these obstacles by using floating-gate transistors (FGTs), and analyze problems associated with the practical implementation. FGT technology is attractive because it is electrically programmable and also features a charge-based built-in non-volatile memory. Apart from being ideal for canceling the circuit non-idealities due to process variations, the FGTs can also be used as computational or adaptive elements in analog circuits. The nominal gate oxide thickness in the deep sub-micron (DSM) processes is too thin to support robust charge retention and consequently the FGT becomes leaky. In principle, non-leaky FGTs can be implemented in a scaled down process without any special masks by using “double”-oxide transistors intended for providing devices that operate with higher supply voltages than general purpose devices. However, in practice the technology scaling poses several challenges which are addressed in this thesis. To provide a sufficiently wide-ranging survey, six prototype chips with varying complexity were implemented in four different DSM process nodes and investigated from this perspective. The focus is on non-leaky FGTs, but the presented autozeroing floating-gate amplifier (AFGA) demonstrates that leaky FGTs may also find a use. The simplest test structures contain only a few transistors, whereas the most complex experimental chip is an implementation of a spiking neural network (SNN) which comprises thousands of active and passive devices. More precisely, it is a fully connected (256 FGT synapses) two-layer spiking neural network (SNN), where the adaptive properties of FGT are taken advantage of. A compact realization of Spike Timing Dependent Plasticity (STDP) within the SNN is one of the key contributions of this thesis. Finally, the considerations in this thesis extend beyond CMOS to emerging nanodevices. To this end, one promising emerging nanoscale circuit element - memristor - is reviewed and its applicability for analog processing is considered. Furthermore, it is discussed how the FGT technology can be used to prototype computation paradigms compatible with these emerging two-terminal nanoscale devices in a mature and widely available CMOS technology.
Resumo:
Defects in semiconductor crystals and at their interfaces usually impair the properties and the performance of devices. These defects include, for example, vacancies (i.e., missing crystal atoms), interstitials (i.e., extra atoms between the host crystal sites), and impurities such as oxygen atoms. The defects can decrease (i) the rate of the radiative electron transition from the conduction band to the valence band, (ii) the amount of charge carriers, and (iii) the mobility of the electrons in the conduction band. It is a common situation that the presence of crystal defects can be readily concluded as a decrease in the luminescence intensity or in the current flow for example. However, the identification of the harmful defects is not straightforward at all because it is challenging to characterize local defects with atomic resolution and identification. Such atomic-scale knowledge is however essential to find methods for reducing the amount of defects in energy-efficient semiconductor devices. The defects formed in thin interface layers of semiconductors are particularly difficult to characterize due to their buried and amorphous structures. Characterization methods which are sensitive to defects often require well-defined samples with long range order. Photoelectron spectroscopy (PES) combined with photoluminescence (PL) or electrical measurements is a potential approach to elucidate the structure and defects of the interface. It is essential to combine the PES with complementary measurements of similar samples to relate the PES changes to changes in the interface defect density. Understanding of the nature of defects related to III-V materials is relevant to developing for example field-effect transistors which include a III-V channel, but research is still far from complete. In this thesis, PES measurements are utilized in studies of various III-V compound semiconductor materials. PES is combined with photoluminescence measurements to study the SiO2/GaAs, SiNx/GaAs and BaO/GaAs interfaces. Also the formation of novel materials InN and photoluminescent GaAs nanoparticles are studied. Finally, the formation of Ga interstitial defects in GaAsN is elucidated by combining calculational results with PES measurements.
Resumo:
Distributed storage systems are studied. The interest in such system has become relatively wide due to the increasing amount of information needed to be stored in data centers or different kinds of cloud systems. There are many kinds of solutions for storing the information into distributed devices regarding the needs of the system designer. This thesis studies the questions of designing such storage systems and also fundamental limits of such systems. Namely, the subjects of interest of this thesis include heterogeneous distributed storage systems, distributed storage systems with the exact repair property, and locally repairable codes. For distributed storage systems with either functional or exact repair, capacity results are proved. In the case of locally repairable codes, the minimum distance is studied. Constructions for exact-repairing codes between minimum bandwidth regeneration (MBR) and minimum storage regeneration (MSR) points are given. These codes exceed the time-sharing line of the extremal points in many cases. Other properties of exact-regenerating codes are also studied. For the heterogeneous setup, the main result is that the capacity of such systems is always smaller than or equal to the capacity of a homogeneous system with symmetric repair with average node size and average repair bandwidth. A randomized construction for a locally repairable code with good minimum distance is given. It is shown that a random linear code of certain natural type has a good minimum distance with high probability. Other properties of locally repairable codes are also studied.
Resumo:
This thesis reports investigations on applying the Service Oriented Architecture (SOA) approach in the engineering of multi-platform and multi-devices user interfaces. This study has three goals: (1) analyze the present frameworks for developing multi-platform and multi-devices applications, (2) extend the principles of SOA for implementing a multi-platform and multi-devices architectural framework (SOA-MDUI), (3) applying and validating the proposed framework in the context of a specific application. One of the problems addressed in this ongoing research is the large amount of combinations for possible implementations of applications on different types of devices. Usually it is necessary to take into account the operating system (OS), user interface (UI) including the appearance, programming language (PL) and architectural style (AS). Our proposed approach extended the principles of SOA using patterns-oriented design and model-driven engineering approaches. Synthesizing the present work done in these domains, this research built and tested an engineering framework linking Model-driven Architecture (MDA) and SOA approaches to developing of UI. This study advances general understanding of engineering, deploying and managing multi-platform and multi-devices user interfaces as a service.
Resumo:
This work presents synopsis of efficient strategies used in power managements for achieving the most economical power and energy consumption in multicore systems, FPGA and NoC Platforms. In this work, a practical approach was taken, in an effort to validate the significance of the proposed Adaptive Power Management Algorithm (APMA), proposed for system developed, for this thesis project. This system comprise arithmetic and logic unit, up and down counters, adder, state machine and multiplexer. The essence of carrying this project firstly, is to develop a system that will be used for this power management project. Secondly, to perform area and power synopsis of the system on these various scalable technology platforms, UMC 90nm nanotechnology 1.2v, UMC 90nm nanotechnology 1.32v and UMC 0.18 μmNanotechnology 1.80v, in order to examine the difference in area and power consumption of the system on the platforms. Thirdly, to explore various strategies that can be used to reducing system’s power consumption and to propose an adaptive power management algorithm that can be used to reduce the power consumption of the system. The strategies introduced in this work comprise Dynamic Voltage Frequency Scaling (DVFS) and task parallelism. After the system development, it was run on FPGA board, basically NoC Platforms and on these various technology platforms UMC 90nm nanotechnology1.2v, UMC 90nm nanotechnology 1.32v and UMC180 nm nanotechnology 1.80v, the system synthesis was successfully accomplished, the simulated result analysis shows that the system meets all functional requirements, the power consumption and the area utilization were recorded and analyzed in chapter 7 of this work. This work extensively reviewed various strategies for managing power consumption which were quantitative research works by many researchers and companies, it's a mixture of study analysis and experimented lab works, it condensed and presents the whole basic concepts of power management strategy from quality technical papers.
Resumo:
Human-Centered Design (HCD) is a well-recognized approach to the design of interactive computing systems that supports everyday and professional lives of people. To that end, the HCD approach put central emphasis on the explicit understanding of users and context of use by involving users throughout the entire design and development process. With mobile computing, the diversity of users as well as the variety in the spatial, temporal, and social settings of the context of use has notably expanded, which affect the effort of interaction designers to understand users and context of use. The emergence of the mobile apps era in 2008 as a result of structural changes in the mobile industry and the profound enhanced capabilities of mobile devices, further intensify the embeddedness of technology in the daily life of people and the challenges that interaction designers face to cost-efficiently understand users and context of use. Supporting interaction designers in this challenge requires understanding of their existing practice, rationality, and work environment. The main objective of this dissertation is to contribute to interaction design theories by generating understanding on the HCD practice of mobile systems in the mobile apps era, as well as to explain the rationality of interaction designers in attending to users and context of use. To achieve that, a literature study is carried out, followed by a mixed-methods research that combines multiple qualitative interview studies and a quantitative questionnaire study. The dissertation contributes new insights regarding the evolving HCD practice at an important time of transition from stationary computing to mobile computing. Firstly, a gap is identified between interaction design as practiced in research and in the industry regarding the involvement of users in context; whereas the utilization of field evaluations, i.e. in real-life environments, has become more common in academic projects, interaction designers in the industry still rely, by large, on lab evaluations. Secondly, the findings indicate on new aspects that can explain this gap and the rationality of interaction designers in the industry in attending to users and context; essentially, the professional-client relationship was found to inhibit the involvement of users, while the mental distance between practitioners and users as well as the perceived innovativeness of the designed system are suggested in explaining the inclination to study users in situ. Thirdly, the research contributes the first explanatory model on the relation between the organizational context and HCD; essentially, innovation-focused organizational strategies greatly affect the cost-effective usage of data on users and context of use. Last, the findings suggest a change in the nature of HCD in the mobile apps era, at least with universal consumer systems; evidently, the central attention on the explicit understanding of users and context of use shifts from an early requirements phase and continual activities during design and development to follow-up activities. That is, the main effort to understand users is by collecting data on their actual usage of the system, either before or after the system is deployed. The findings inform both researchers and practitioners in interaction design. In particular, the dissertation suggest on action research as a useful approach to support interaction designers and further inform theories on interaction design. With regard to the interaction design practice, the dissertation highlights strategies that encourage a more cost-effective user- and context-informed interaction design process. With the continual embeddedness of computing into people’s life, e.g. with wearable devices and connected car systems, the dissertation provides a timely and valuable view on the evolving humancentered design.