50 resultados para Knowledge retrieval, Ontology, User information needs, User profiles, Information retrieval
Resumo:
A growing concern for organisations is how they should deal with increasing amounts of collected data. With fierce competition and smaller margins, organisations that are able to fully realize the potential in the data they collect can gain an advantage over the competitors. It is almost impossible to avoid imprecision when processing large amounts of data. Still, many of the available information systems are not capable of handling imprecise data, even though it can offer various advantages. Expert knowledge stored as linguistic expressions is a good example of imprecise but valuable data, i.e. data that is hard to exactly pinpoint to a definitive value. There is an obvious concern among organisations on how this problem should be handled; finding new methods for processing and storing imprecise data are therefore a key issue. Additionally, it is equally important to show that tacit knowledge and imprecise data can be used with success, which encourages organisations to analyse their imprecise data. The objective of the research conducted was therefore to explore how fuzzy ontologies could facilitate the exploitation and mobilisation of tacit knowledge and imprecise data in organisational and operational decision making processes. The thesis introduces both practical and theoretical advances on how fuzzy logic, ontologies (fuzzy ontologies) and OWA operators can be utilized for different decision making problems. It is demonstrated how a fuzzy ontology can model tacit knowledge which was collected from wine connoisseurs. The approach can be generalised and applied also to other practically important problems, such as intrusion detection. Additionally, a fuzzy ontology is applied in a novel consensus model for group decision making. By combining the fuzzy ontology with Semantic Web affiliated techniques novel applications have been designed. These applications show how the mobilisation of knowledge can successfully utilize also imprecise data. An important part of decision making processes is undeniably aggregation, which in combination with a fuzzy ontology provides a promising basis for demonstrating the benefits that one can retrieve from handling imprecise data. The new aggregation operators defined in the thesis often provide new possibilities to handle imprecision and expert opinions. This is demonstrated through both theoretical examples and practical implementations. This thesis shows the benefits of utilizing all the available data one possess, including imprecise data. By combining the concept of fuzzy ontology with the Semantic Web movement, it aspires to show the corporate world and industry the benefits of embracing fuzzy ontologies and imprecision.
Resumo:
This thesis applies the customer value hierarchy model to forestry in order to determine strategic options to enhance the value of LiDAR technology in Russian forestry. The study is conducted as a qualitative case study with semi-structured interviews as a main source of the primary data. The customer value hierarchy model constitutes a theoretical base for the research. Secondary data incorporates information on forest resource management, LiDAR technology and Russian forestry. The model is operationalised using forestry literature and forms a basis for analyses of primary data. Analyses of primary data coupled with comprehension of Russian forest inventory system and knowledge on global forest inventory have led to conclusions on the forest inventory methods selection criteria and the organizations that would benefit the most from LiDAR technology use. The thesis recommends strategic options for LiDAR technology’s value enhancement in Russian forestry.
Resumo:
This research report applies the customer value hierarchy model to forestry in order to determine strategic options to enhance the value of LiDAR technology in Russian forestry. The study is conducted as a qualitative case study with semi-structured interviews as a main source of the primary data. The customer value hierarchy model constitutes a theoretical base for the research. Secondary data incorporates information on forest resource management, LiDAR technology and Russian forestry. The model is operationalised using forestry literature and forms a basis for analyses of primary data. Analyses of primary data coupled with comprehension of Russian forest inventory system and knowledge on global forest inventory have led to conclusions on the forest inventory methods selection criteria and the organizations that would benefit the most from LiDAR technology use. The report recommends strategic options for LiDAR technology’s value enhancement in Russian forestry. This work has been conducted as a part of the project ‘Finnish-Russian Forest Academy 2 - Exploiting and Piloting’, which has been supported financially by the South-East Finland- Russia ENPI CBC 2007-2014 Programme.
Resumo:
Building Information Modeling – BIM is widely spreading in the Architecture, Engineering, and Construction (AEC) industries. Manufacturers of building elements are also starting to provide more and more objects of their products. The ideal availability and distribution for these models is not yet stabilized. Usual goal of a manufacturer is to get their model into design as early as possible. Finding the ways to satisfy customer needs with a superior service would help to achieve this goal. This study aims to seek what case company’s customers want out of the model and what they think is the ideal way to obtain these models and what are the desired functionalities for this service. This master’s thesis uses a modified version of lead user method to gain understanding of what the needs are in a longer term. In this framework also benchmarking of current solutions and their common model functions is done. Empirical data is collected with survey and interviews. As a result this thesis provides understanding that what is the information customer uses when obtaining a model, what kind of model is expected to be achieved and how is should the process optimally function. Based on these results ideal service is pointed out.
Resumo:
With the growth in new technologies, using online tools have become an everyday lifestyle. It has a greater impact on researchers as the data obtained from various experiments needs to be analyzed and knowledge of programming has become mandatory even for pure biologists. Hence, VTT came up with a new tool, R Executables (REX) which is a web application designed to provide a graphical interface for biological data functions like Image analysis, Gene expression data analysis, plotting, disease and control studies etc., which employs R functions to provide results. REX provides a user interactive application for the biologists to directly enter the values and run the required analysis with a single click. The program processes the given data in the background and prints results rapidly. Due to growth of data and load on server, the interface has gained problems concerning time consumption, poor GUI, data storage issues, security, minimal user interactive experience and crashes with large amount of data. This thesis handles the methods by which these problems were resolved and made REX a better application for the future. The old REX was developed using Python Django and now, a new programming language, Vaadin has been implemented. Vaadin is a Java framework for developing web applications and the programming language is extremely similar to Java with new rich components. Vaadin provides better security, better speed, good and interactive interface. In this thesis, subset functionalities of REX was selected which includes IST bulk plotting and image segmentation and implemented those using Vaadin. A code of 662 lines was programmed by me which included Vaadin as the front-end handler while R language was used for back-end data retrieval, computing and plotting. The application is optimized to allow further functionalities to be migrated with ease from old REX. Future development is focused on including Hight throughput screening functions along with gene expression database handling