68 resultados para Fluid transport
Resumo:
21 x 29 cm
Resumo:
17 x 25 cm
Resumo:
kuv., 24 x 12 cm
Resumo:
kuv., 14 x 22 cm
Resumo:
kuv., 17 x 23 cm
Resumo:
C-Jun N-terminal kinase (JNK) is traditionally recognized as a crucial factor in stress response and inducer of apoptosis upon various stimulations. Three isoforms build the JNK subfamily of MAPK; generally expressed JNK1 and JNK2 and brain specific JNK3. Degenerative potency placed JNK in the spotlight as potential pharmacological option for intervention. Unfortunately, adverse effects of potential drugs and observation that expression of only JNK2 and JNK3 are induced upon stress, restrained initial enthusiasm. Notably, JNK1 demonstrated atypical high constitutive activity in neurons that is not responsive to cellular stresses and indicated existence of physiological activity. This thesis aimed at revealing the physiological functions of JNK1 in actin homeostasis through novel effector MARCKS-Like 1 (MARCKSL1) protein, neuronal trafficking mediated by major kinesin-1 motor protein and microtubule (MT) dynamics via STMN2/SCG10. The screen for novel physiological JNK substrates revealed specific phosphorylation of C-terminal end of MARCKSL1 at S120, T148 and T183 both ex vivo and in vitro. By utilizing site-specific mutagenesis, various actin dynamics and migrations assays we were able to demonstrate that JNK1 phosphorylation specifically facilitates F-actin bundling and thus filament stabilisation. Consecutively, this molecular mechanism was proved to enhance formation of filopodia; cell surface projections that allow cell sensing surrounding environment and migrate efficiently. Our results visualize JNK dependent and MARCKSL1 executed induction of filopodia in neurons and fibroblast indicating general mechanism. Subsequently, inactivation of JNK action on MARCKSL1 shifts cellular actin machinery into lamellipodial dynamic arrangement. Tuning of actin cytoskeleton inevitably melds with cell migration. We observed that both active JNK and JNK pseudo-phosphorylated form of MARCKSL1 reduce actin turnover in intact cells leading to overall diminished cell motility. We demonstrate that tumour transformed cells from breast, prostate, lung and muscle-derived cancers upregulate MARCKSL1. We showed on the example of prostate cancer PC-3 cell line that JNK phosphorylation negatively controls MARCKSL1 ability to induce migration, which precedes cancer cell metastasis. The second round of identification of JNK physiological substrates resulted in detection of predominant motor protein kinesin-1 (Kif5). Mass spectrometry detailed analysis showed evident endogenous phosphorylation of kinesin-1 on S176 within motor domain that interacts with MT. In vitro phosphorylation of bacterially expressed kinesin heavy chain by JNK isoforms displayed higher specificity of JNK1 when compared to JNK3. Since, JNK1 is constitutively active in neurons it signified physiological aspect of kinesin-1 regulation. Subsequent biochemical examination revealed that kinesin-1, when not phosphorylated on JNK site, exhibits much higher affinity toward MTs. Expression of the JNK non-phosphorable kinesin-1 mutant in intact cells as well as in vitro single molecule imaging using total internal reflection fluorescence microscopy indicated that the mutant loses normal speed and is not able to move processively into proper cellular compartments. We identify novel kinesin-1 cargo protein STMN2/SCG10, which along with known kinesin-1 cargo BDNF is showing impaired trafficking when JNK activity is inhibited. Our data postulates that constitutive JNK activity in neurons is crucial for unperturbed physiologically relevant transport of kinesin-1 dependant cargo. Additionally, my work helps to validate another novel physiological JNK1 effector STMN2/SCG10 as determinant of axodendritic neurites dynamics in the developing brain through regulation of MT turnover. We show successively that this increased MT dynamics is crucial during developmental radial migration when brain layering occurs. Successively, we are able to show that introduction of JNK phosphorylation mimicking STMN2/SCG10 S62/73D mutant rescues completely JNK1 genetic deletion migration phenotype. We prove that STMN2/SCG10 is predominant JNK effector responsible for MT depolymerising activity and neurite length during brain development. Summarizing, this work describes identification of three novel JNK substrates MARCKSL1, kinesin-1 and STMN2/SCG10 and investigation of their roles in cytoskeleton dynamics and cargo transport. This data is of high importance to understand physiological meaning of JNK activity, which might have an adverse effect during pharmaceutical intervention aiming at blocking pathological JNK action.
Resumo:
In this Master’s Thesis a global transport packaging guideline for selected business areas was compiled for the Fiskars the company, which provides branded consumer goods for home, garden and outdoor use. The business areas included were Home and Garden business areas. The aim of the guideline was to be a comprehensive guide for the suppliers, product development, operations and external vendors of the company. The guideline consists of written instructions, tables and illustrations that provide useful information for players working with transport packages from sourcing through to shipments. As the role of corporate responsibility and sustainability has grown, a part of responsible manufacturing strategy includes using materials that are re-usable, recyclable or recoverable as energy or through composting. Hence packaging waste management implementations of different regions were also inspected. The resulting guide covers a range of topics concerning packaging and its transport. The topics include legal requirements, restricted materials and substances, preferred materials, markings, labeling of boxes, logistics and distribution center requirements, physical testing and an inspection checklist.
Resumo:
The European transport market has confronted several changes during the last decade. Due to European Union legislative mandates, the railway freight market was deregulated in 2007. The market followed the trend started by other transport modes as well as other previously regulated industries such as banking, telecommunications and energy. Globally, the first country to deregulate the railway freight market was the United States, with the introduction of the Staggers Rail Act in 1980. Some European countries decided to follow suit already before regulation was mandated; among the forerunners were the United Kingdom, Sweden and Germany. The previous research has concentrated only on these countries, which has provided an interesting research gap for this thesis. The Baltic Sea Region consists of countries with different kinds of liberalization paths, including Sweden and Germany, which have been on the frontline, whereas Lithuania and Finland have only one active railway undertaking, the incumbent. The transport market of the European Union is facing further challenges in the near future, due to the Sulphur Directive, oil dependency and the changing structure of European rail networks. In order to improve the accessibility of this peripheral area, further action is required. This research focuses on topics such as the progression of deregulation, barriers to entry, country-specific features, cooperation and internationalization. Based on the research results, it can be stated that the Baltic Sea Region’s railway freight market is expected to change in the future. Further private railway undertakings are anticipated, and these would change the market structure. The realization of European Union’s plans to increase the improved rail network to cover the Baltic States is strongly hoped for, and railway freight market counterparts inside and among countries are starting to enhance their level of cooperation. The Baltic Sea Region countries have several special national characteristics which influence the market and should be taken into account when companies evaluate possible market entry actions. According to thesis interviews, the Swedish market has a strong level of cooperation in the form of an old-boy network, and is supported by a positive attitude of the incumbent towards the private railway undertakings. This has facilitated the entry process of newcomers, and currently the market has numerous operating railway undertakings. A contrary example was found from Poland, where the incumbent sent old rolling stock to the scrap yard rather than sell it to private railway undertakings. The importance of personal relations is highlighted in Russia, followed by the railway market’s strong political bond with politics. Nonetheless, some barriers to entry are shared by the Baltic Sea Region, the main ones being acquisition of rolling stock, bureaucracy and needed investments. The railway freight market is internationalizing, which is perceived via several alliances as well as the increased number of mergers and acquisitions. After deregulation, markets seem to increase the number of railway undertakings at a rather fast pace, but with the passage of time, the larger operators tend to acquire smaller ones. Therefore, it is expected that in a decade’s time, the number of railway undertakings will start to decrease in the deregulation pioneer countries, while the ones coming from behind might still experience an increase. The Russian market is expected to be totally liberalized, and further alliances between the Russian Railways and European railway undertakings are expected to occur. The Baltic Sea Region’s railway freight market is anticipated to improve, and, based on the interviewees’ comments, attract more cargoes from road to rail.
Resumo:
Hydraulic head is distributed through a medium with porous aspect. The analysis of hydraulic head from one point to another is used by the Richard's equation. This equation is equivalent to the groundwater ow equation that predicts the volumetric water contents. COMSOL 3.5 is used for computation applying Richard's equation. A rectangle of 100 meters of length and 10 meters of large (depth) with 0,1 m/s fl ux of inlet as source of our fl uid is simulated. The domain have Richards' equation model in two dimension (2D). Hydraulic head increases proportional with moisture content.
Resumo:
Background: Lymphedema is a debilitating disorder with few treatment options. Clinical studies have shown that microvascular lymph node transfer may improve the lymphatic function of the affected limb. This study provides information about the clinical efficacy and safety of this procedure. Further, the biological background of this technique is clarified with an analysis of postoperative production of lymphatic growth factors and cytokines related to lymphangiogenesis. Patients and Methods: The effect of lymph node transfer to recipient and donor sites was analyzed with lymphoscintigraphy, limb circumference measurements, and appearance of clinical symptoms. Axillary seroma samples were analyzed from four patient groups: Axillary lymph node removal (ALND), Microvascular breast reconstruction (BR), lymph node transfer (LN) and combined lymph node transfer and breast reconstruction (LN-BR). Results: The postoperative lymphatic transport index was improved in 7/19 patients. Ten patients were able to reduce or discontinue compression therapy 6 - 24 months postoperatively. The donor lower limb lymphatic flow was slightly impaired (Ti >10) in 2 patients. No donor site lymphedema symptoms appeared during the 8 – 56-month follow-up. A high concentration of the VEGF-C protein was detected in the seroma fluid of all flap transfer groups. The concentration of the anti-inflammatory and anti-fibrotic cytokine IL-10 was increased in the LN-BR group samples when compared to the ALND or BR group. Conclusions: According to this preliminary study, the lymph node transfer seems to be beneficial for the lymphedema patients. However, a randomized study comparing the effect of BR and LN-BR is needed to evaluate the clinical efficacy of lymph node transfer. In addition, the effect of this surgery on the donor site needs to be studied further. The clinical effects of the lymph node transfer might be partly mediated by increased production of the lymphangiogenic growth factor (VEGF-C) as well as the anti-fibrotic cytokine (IL-10).
Resumo:
The world’s pace of change is accelerating and new innovations, inventions and technologies come about every day. Change is unavoidable. It is difficult to keep up and even more difficult to prepare for the future. Even though it is not possible to know exactly what will happen in the future, by studying futures people can better anticipate what might lie ahead. By making decisions and realizing the consequences of their choices today, people and governments are able to actively decide how they will act in the future. Both opportunities and pitfalls lie ahead, which encourages actors to make more farsighted decisions. The Baltic Sea region is an interesting area for futures studies. It comprises 11 nations and more than 100 million inhabitants and entails countries with advanced, high-income economies, like Finland, Germany and Denmark, and developing economies, like Russia, Latvia and Lithuania. The western, eastern, northern and southern parts of the region are separated by the Baltic Sea, which at the same time represents a barrier and a facility for trade and travel between the countries belonging to the region The purpose of this study was to uncover the most probable future of transport and logistics in the Baltic Sea region in 2025 by using the Delphi method. Altogether 109 responses were collected in two separate instances from experts in all the Baltic Sea region countries, 56 of whom were defined as academic respondents and 53 of whom business respondents. Only minor differences in the opinions of academic and business experts were discovered, and the larger differences lie between eastern and western response groups. The Baltic Sea region is a very heterogeneous region and the division is clearest between East and West, which differ in political, economic, social, technological and environmental aspects. The probable future of the Baltic Sea region presented in this study is coherent with previous studies on the same subject. The future of the Baltic Sea region in terms of logistics and transport looks quite bright according to the experts who participated in the study. Trade volumes will grow and the importance of logistics and transport to the competitiveness of the region will increase. Respondents from eastern countries seemed to be more optimistic about the future in general. Most differences between opinions could be explained by the gap in technological and infrastructural development between the East and West. As eastern countries are less-developed in some parts of their economies, it is easier for them to improve the technical condition of infrastructure by merely catching up with the western countries.
Resumo:
The purpose of this work is to obtain a better understanding of behaviour of possible ultrasound appliance on fluid media mixing. The research is done in the regard to Newtonian and non-Newtonian fluids. The process of ultrasound appliance on liquids is modelled in COMSOL Multiphysics software. The influence of ultrasound using is introduced as waveform equation. Turbulence modelling is fulfilled by the k-ε model in Newtonian fluid. The modeling of ultrasound assisted mixing in non-Newtonian fluids is based on the power law. To verify modelling results two practical methods are used: Particle Image Velocimetry and measurements of mixing time. Particle Image Velocimetry allows capturing of velocity flow field continuously and presents detailed depiction of liquid dynamics. The second way of verification is the comparison of mixing time of homogeneity. Experimentally achievement of mixing time is done by conductivity measurements. In modelling part mixing time is achieved by special module of COMSOL Multiphysics – the transport of diluted species. Both practical and modelling parts show similar radial mechanism of fluid flow under ultrasound appliance – from the horn tip fluid moves to the bottom and along the walls goes back. Velocity profiles are similar in modelling and experimental part in the case of Newtonian fluid. In the case of non-Newtonian fluid velocity profiles do not agree. The development track of ultrasound-assisted mixing modelling is presented in the thesis.
Resumo:
The main objective of this research is to estimate and characterize heterogeneous mass transfer coefficients in bench- and pilot-scale fluidized bed processes by the means of computational fluid dynamics (CFD). A further objective is to benchmark the heterogeneous mass transfer coefficients predicted by fine-grid Eulerian CFD simulations against empirical data presented in the scientific literature. First, a fine-grid two-dimensional Eulerian CFD model with a solid and gas phase has been designed. The model is applied for transient two-dimensional simulations of char combustion in small-scale bubbling and turbulent fluidized beds. The same approach is used to simulate a novel fluidized bed energy conversion process developed for the carbon capture, chemical looping combustion operated with a gaseous fuel. In order to analyze the results of the CFD simulations, two one-dimensional fluidized bed models have been formulated. The single-phase and bubble-emulsion models were applied to derive the average gas-bed and interphase mass transfer coefficients, respectively. In the analysis, the effects of various fluidized bed operation parameters, such as fluidization, velocity, particle and bubble diameter, reactor size, and chemical kinetics, on the heterogeneous mass transfer coefficients in the lower fluidized bed are evaluated extensively. The analysis shows that the fine-grid Eulerian CFD model can predict the heterogeneous mass transfer coefficients quantitatively with acceptable accuracy. Qualitatively, the CFD-based research of fluidized bed process revealed several new scientific results, such as parametrical relationships. The huge variance of seven orders of magnitude within the bed Sherwood numbers presented in the literature could be explained by the change of controlling mechanisms in the overall heterogeneous mass transfer process with the varied process conditions. The research opens new process-specific insights into the reactive fluidized bed processes, such as a strong mass transfer control over heterogeneous reaction rate, a dominance of interphase mass transfer in the fine-particle fluidized beds and a strong chemical kinetic dependence of the average gas-bed mass transfer. The obtained mass transfer coefficients can be applied in fluidized bed models used for various engineering design, reactor scale-up and process research tasks, and they consequently provide an enhanced prediction accuracy of the performance of fluidized bed processes.
Resumo:
Demand for the use of energy systems, entailing high efficiency as well as availability to harness renewable energy sources, is a key issue in order to tackling the threat of global warming and saving natural resources. Organic Rankine cycle (ORC) technology has been identified as one of the most promising technologies in recovering low-grade heat sources and in harnessing renewable energy sources that cannot be efficiently utilized by means of more conventional power systems. The ORC is based on the working principle of Rankine process, but an organic working fluid is adopted in the cycle instead of steam. This thesis presents numerical and experimental results of the study on the design of small-scale ORCs. Two main applications were selected for the thesis: waste heat re- covery from small-scale diesel engines concentrating on the utilization of the exhaust gas heat and waste heat recovery in large industrial-scale engine power plants considering the utilization of both the high and low temperature heat sources. The main objective of this work was to identify suitable working fluid candidates and to study the process and turbine design methods that can be applied when power plants based on the use of non-conventional working fluids are considered. The computational work included the use of thermodynamic analysis methods and turbine design methods that were based on the use of highly accurate fluid properties. In addition, the design and loss mechanisms in supersonic ORC turbines were studied by means of computational fluid dynamics. The results indicated that the design of ORC is highly influenced by the selection of the working fluid and cycle operational conditions. The results for the turbine designs in- dicated that the working fluid selection should not be based only on the thermodynamic analysis, but requires also considerations on the turbine design. The turbines tend to be fast rotating, entailing small blade heights at the turbine rotor inlet and highly supersonic flow in the turbine flow passages, especially when power systems with low power outputs are designed. The results indicated that the ORC is a potential solution in utilizing waste heat streams both at high and low temperatures and both in micro and larger scale appli- cations.