52 resultados para Extended techniques
Resumo:
The shift towards a knowledge-based economy has inevitably prompted the evolution of patent exploitation. Nowadays, patent is more than just a prevention tool for a company to block its competitors from developing rival technologies, but lies at the very heart of its strategy for value creation and is therefore strategically exploited for economic pro t and competitive advantage. Along with the evolution of patent exploitation, the demand for reliable and systematic patent valuation has also reached an unprecedented level. However, most of the quantitative approaches in use to assess patent could arguably fall into four categories and they are based solely on the conventional discounted cash flow analysis, whose usability and reliability in the context of patent valuation are greatly limited by five practical issues: the market illiquidity, the poor data availability, discriminatory cash-flow estimations, and its incapability to account for changing risk and managerial flexibility. This dissertation attempts to overcome these impeding barriers by rationalizing the use of two techniques, namely fuzzy set theory (aiming at the first three issues) and real option analysis (aiming at the last two). It commences with an investigation into the nature of the uncertainties inherent in patent cash flow estimation and claims that two levels of uncertainties must be properly accounted for. Further investigation reveals that both levels of uncertainties fall under the categorization of subjective uncertainty, which differs from objective uncertainty originating from inherent randomness in that uncertainties labelled as subjective are highly related to the behavioural aspects of decision making and are usually witnessed whenever human judgement, evaluation or reasoning is crucial to the system under consideration and there exists a lack of complete knowledge on its variables. Having clarified their nature, the application of fuzzy set theory in modelling patent-related uncertain quantities is effortlessly justified. The application of real option analysis to patent valuation is prompted by the fact that both patent application process and the subsequent patent exploitation (or commercialization) are subject to a wide range of decisions at multiple successive stages. In other words, both patent applicants and patentees are faced with a large variety of courses of action as to how their patent applications and granted patents can be managed. Since they have the right to run their projects actively, this flexibility has value and thus must be properly accounted for. Accordingly, an explicit identification of the types of managerial flexibility inherent in patent-related decision making problems and in patent valuation, and a discussion on how they could be interpreted in terms of real options are provided in this dissertation. Additionally, the use of the proposed techniques in practical applications is demonstrated by three fuzzy real option analysis based models. In particular, the pay-of method and the extended fuzzy Black-Scholes model are employed to investigate the profitability of a patent application project for a new process for the preparation of a gypsum-fibre composite and to justify the subsequent patent commercialization decision, respectively; a fuzzy binomial model is designed to reveal the economic potential of a patent licensing opportunity.
Resumo:
This study reviews the research on interaction techniques and methods that could be applied in mobile augmented reality scenarios. The review is focused on themost recent advances and considers especially the use of head-mounted displays. Inthe review process, we have followed a systematic approach, which makes the reviewtransparent, repeatable, and less prone to human errors than if it was conducted in amore traditional manner. The main research subjects covered in the review are headorientation and gaze-tracking, gestures and body part-tracking, and multimodality– as far as the subjects are related to human-computer interaction. Besides these,also a number of other areas of interest will be discussed.
Resumo:
X-ray computed log tomography has always been applied for qualitative reconstructions. In most cases, a series of consecutive slices of the timber are scanned to estimate the 3D image reconstruction of the entire log. However, the unexpected movement of the timber under study influences the quality of image reconstruction since the position and orientation of some scanned slices can be incorrectly estimated. In addition, the reconstruction time remains a significant challenge for practical applications. The present study investigates the possibility to employ modern physics engines for the problem of estimating the position of a moving rigid body and its scanned slices which are subject to X-ray computed tomography. The current work includes implementations of the extended Kalman filter and an algebraic reconstruction method for fan-bean computer tomography. In addition, modern techniques such as NVidia PhysX and CUDA are used in current study. As the result, it is numerically shown that it is possible to apply the extended Kalman filter together with a real-time physics engine, known as PhysX, in order to determine the position of a moving object. It is shown that the position of the rigid body can be determined based only on reconstructions of its slices. However, the simulation of the body movement sometimes is subject to an error during Kalman filter employment as PhysX is not always able to continue simulating the movement properly because of incorrect state estimation.
Resumo:
PhotoAcoustic Imaging (PAI) is a branch in clinical and pre-clinical imaging, that refers to the techniques mapping acoustic signals caused by the absorption of the short laser pulse. This conversion of electromagnetic energy of the light to the mechanical (acoustic) energy is usually called photoacoustic effect. PAI, by combining optical excitation with acoustical detection, is able to preserve the diffraction limited spatial resolution. At the same time, the penetration depth is extended beyond the diffusive limit. The Laser-Scanning PhotoAcoustic Microscope system (LS-PAM) has been developed, that offers the axial resolution of 7.75 µm with the lateral resolution better than 10 µm. The first in vivo imaging experiments were carried out. Thus, in vivo label-free imaging of the mouse ear was performed. The principle possibility to image vessels located in deep layers of the mouse skin was shown. As well as that, a gold printing sample, vasculature of the Chick Chorioallantoic Membrane Assay, Drosophila larvae were imaged by PAI. During the experimental work, a totally new application of PAM was found, in which the acoustic waves, generated by incident light can be used for further imaging of another sample. In order to enhance the performance of the presented system two main recommendation can be offered. First, the current system should be transformed into reflection-mode setup system. Second, a more powerful source of light with the sufficient repetition rate should be introduced into the system.
Resumo:
The increased awareness and evolved consumer habits have set more demanding standards for the quality and safety control of food products. The production of foodstuffs which fulfill these standards can be hampered by different low-molecular weight contaminants. Such compounds can consist of, for example residues of antibiotics in animal use or mycotoxins. The extremely small size of the compounds has hindered the development of analytical methods suitable for routine use, and the methods currently in use require expensive instrumentation and qualified personnel to operate them. There is a need for new, cost-efficient and simple assay concepts which can be used for field testing and are capable of processing large sample quantities rapidly. Immunoassays have been considered as the golden standard for such rapid on-site screening methods. The introduction of directed antibody engineering and in vitro display technologies has facilitated the development of novel antibody based methods for the detection of low-molecular weight food contaminants. The primary aim of this study was to generate and engineer antibodies against low-molecular weight compounds found in various foodstuffs. The three antigen groups selected as targets of antibody development cause food safety and quality defects in wide range of products: 1) fluoroquinolones: a family of synthetic broad-spectrum antibacterial drugs used to treat wide range of human and animal infections, 2) deoxynivalenol: type B trichothecene mycotoxin, a widely recognized problem for crops and animal feeds globally, and 3) skatole, or 3-methyindole is one of the two compounds responsible for boar taint, found in the meat of monogastric animals. This study describes the generation and engineering of antibodies with versatile binding properties against low-molecular weight food contaminants, and the consecutive development of immunoassays for the detection of the respective compounds.