81 resultados para Emerging Technologies Committee
Resumo:
Information gained from the human genome project and improvements in compound synthesizing have increased the number of both therapeutic targets and potential lead compounds. This has evolved a need for better screening techniques to have a capacity to screen number of compound libraries against increasing amount of targets. Radioactivity based assays have been traditionally used in drug screening but the fluorescence based assays have become more popular in high throughput screening (HTS) as they avoid safety and waste problems confronted with radioactivity. In comparison to conventional fluorescence more sensitive detection is obtained with time-resolved luminescence which has increased the popularity of time-resolved fluorescence resonance energy transfer (TR-FRET) based assays. To simplify the current TR-FRET based assay concept the luminometric homogeneous single-label utilizing assay technique, Quenching Resonance Energy Transfer (QRET), was developed. The technique utilizes soluble quencher to quench non-specifically the signal of unbound fraction of lanthanide labeled ligand. One labeling procedure and fewer manipulation steps in the assay concept are saving resources. The QRET technique is suitable for both biochemical and cell-based assays as indicated in four studies:1) ligand screening study of β2 -adrenergic receptor (cell-based), 2) activation study of Gs-/Gi-protein coupled receptors by measuring intracellular concentration of cyclic adenosine monophosphate (cell-based), 3) activation study of G-protein coupled receptors by observing the binding of guanosine-5’-triphosphate (cell membranes), and 4) activation study of small GTP binding protein Ras (biochemical). Signal-to-background ratios were between 2.4 to 10 and coefficient of variation varied from 0.5 to 17% indicating their suitability to HTS use.
Resumo:
The iron ore pelletizing process consumes high amounts of energy, including nonrenewable sources, such as natural gas. Due to fossil fuels scarcity and increasing concerns regarding sustainability and global warming, at least partial substitution by renewable energy seems inevitable. Gasification projects are being successfully developed in Northern Europe, and large-scale circulating fluidized bed biomass gasifiers have been commissioned in e.g. Finland. As Brazil has abundant biomass resources, biomass gasification is a promising technology in the near future. Biomasses can be converted into product gas through gasification. This work compares different technologies, e.g. air, oxygen and steam gasification, focusing on the use of the product gas in the indurating machine. The use of biosynthetic natural gas is also evaluated. Main parameters utilized to assess the suitability of product gas were adiabatic flame temperature and volumetric flow rate. It was found that low energy content product gas could be utilized in the traveling grate, but it would require burner’s to be changed. On the other hand, bio-SGN could be utilized without any adaptions. Economical assessment showed that all gasification plants are feasible for sizes greater than 60 MW. Bio-SNG production is still more expensive than natural gas in any case.
Resumo:
The doctoral study presents a comprehensive analysis of the impact of the institutional environment on the internationalization-based growth strategic choices of small and mediumsized enterprises (SMEs) in emerging economies. In responding to the calls for more research on institutions and international entrepreneurship, this dissertation extends the linkages between the two to the context of emerging economies. The study presents a comprehensive analysis of institutional challenges and their impact on the internationalization of SMEs in emerging economies, particularly in Russia. The research contributes to the adoption of the institution-based view in international entrepreneurship. The dissertation is presented through five research papers. Based on primary and secondary data, the study categorizes the possible sources of institutional influences on internationalization and empirically tests their impact by applying a method triangulation research design. The result of the conducted research is a proposed theoretical model of the institutional impact on the internationalization of SMEs in emerging economies. The model is specifically focused on the growth stage of the entrepreneurial process and considers only its internationalization facet. The research identifies and provides empirical support for the existence of a positive influence of a transparent and supportive regulatory environment, an institutionalized pool of general business knowledge, and collectivistic value orientation on the proclivity of SMEs to internationalize. A level of appreciation of entrepreneurial initiatives in home country and a greater positive institutional gap provide a positive impact on the international performance of SMEs. The research provides contextualized knowledge of the institutional impact on the internationalization of SMEs in Russia. The obtained results present theoretical value in terms of showing how the environmental conditions effect the entrepreneurial internationalization-based growth in emerging economies, providing the methodological insights into the measurement of the institutional effects, and empirically contextualizing the linkage between institutions and internationalization in the Russian business environment. The research also provides value for the business and policy making stakeholders by identifying ways of utilizing the conditions in the external institutional environment.
Resumo:
The threat of global warming and its consequences are widely recognized, and the question of how to proceed with the long transition towards fossil fuel -neutral economies concerns many nations and people. At the same time the world’s primary energy use is predicted to increase significantly during the next decades as a result of global population and welfare increase. Improved energy efficiency and increased use of renewable energy sources in the world’s energy mix play important roles in the future energy production and consumption. The objective of this thesis is to study how novel renewable energy technologies, such as distributed small-scale bio-fueled combined heat and power production and wind power technologies could be commercialized efficiently. A wide array of attributes may contribute to the diffusion of new products. In general, the bioenergy and wind power technologies are in emerging phases, and the diffusion stage varies from country to country. The effects of firms’ technology choices, collaboration and alliances are studied in this thesis. Furthermore, the roles of national energy infrastructure and energy support schemes in the commercialization of new renewable energy products are explored. The empirical data is based on energy expert interviews, financial and patent data, and literature reviews of different case studies. The thesis comprises two parts. The first part provides an overview of the study, and the second part includes six research publications. The results reveal that small-scale bio-fueled combined heat and power production and wind power technologies are still in emerging phases in their life cycles, and energy support schemes are crucial in the market diffusion. The study contributes to earlier findings in the literature and industry by confirming that adequate energy policies and energy infrastructure are fundamental in the commercialization of novel renewable energy technologies. Firm-specific issues, including business relationships and new business models, and market-related issues will have a more significant role in the market penetration in the future, when the technologies mature and become competitive without political support schemes.
Resumo:
The aim of this work is to perform an in-depth overview on the sustainability of several major commercialized technologies for water desalination and to identify the challenges and propose suggestions for the development of water desalination technologies. The overview of those technologies mainly focuses on the sustainability from the viewpoint of total capital investment, total product cost, energy consumption and global warming index. Additionally, a systematic sustainability assessment methodology has been introduced to validate the assessment process. Conclusions are:1) Reverse osmosis desalination (RO) plants are better than multi-stage flash distillation (MSF) desalination plants and multiple-effect distillation (MED) desalination plants from the viewpoint of energy consumption, global warming index and total production cost; 2)Though energy intensive, MSF plants and MED plants secure their advantages over RO plants by lower total capital investment, wider applicability and purer water desalted and they are still likely to flourish in energy-rich area;3) Water production stage and wastewater disposal stage are the two stages during which most pollutant gases are emitted. The water production stage alone contributes approximately 80~90% of the total pollutant gases emission during its life cycle; 4)The total capital cost per m3 desalted water decreases remarkably with the increasing of plant capacity. The differences between the capital cost per m3 desalted water of RO and other desalination plants will decrease as the capacity increases; 5) It is found that utilities costs serve as the major part of the total product cost, and they account for 91.16%, 85.55% and 71.26% of the total product cost for MSF, MED and RO plants, respectively; 6) The absolute superiority of given technology depends on the actual social-economic situation (energy prices, social policies, technology advancements).
Resumo:
Russia inherited a large research and development (R&D) sector from the Soviet times, and has retained a substantial R&D sector today, compared with other emerging economies. However, Russia is falling behind in all indicators measuring innovative output in comparison with most developed countries. Russia’s innovation performance is disappointing, despite the available stock of human capital and overall investment in R&D. The communist legacy still influences the main actors of the innovation system. The federal state is still the most important funding source for R&D. Private companies are not investing in innovative activities, preferring to “import” innovations embedded in foreign technologies. Universities are outsiders in the innovation system, only a few universities carry out research activities. Nowadays, Russia is a resource-depended country. The economy depends on energy and metals for growth. The Russian economy faces the challenge of diversification and should embrace innovation, and shift to a knowledge economy to remain competitive in the long run. Therefore, Russia has to tackle the challenge of developing an efficient innovation system with its huge potential in science expertise and engineering know-how.
Resumo:
International partnership has received growing interest in the literature during the past decades due to globalization, increased technological approaches and rapid changes in competitive environments. The study specifically determines the support provided by international partners on promotion of e-learning in East Africa, assess the motives of partner selection criteria, the determinants of selecting partners, partner models and partner competence of e-learning provider. The study also evaluates obstacles of e-learning partnering strategy in East Africa learning institutions. The research adopts a descriptive survey design. Target population involved East Africa learning institutions with a list of potential institutions generated from the Ministry of Higher Education database. Through a targeted reduction of the initial database, consisting of all learning institutions, both public and private, the study created a target sample base of 200 learning institutions. Structured questionnaires scheduled were used to collect primary data. Study findings showed the approach way East African communities in selecting their e-learning partners depend on international reputation of partners, partner with ability to negotiate with foreign governments, partner with international and local experiences, nationality of foreign partner and partners with local market knowledge.
Resumo:
In this report, information is published concerning Russian water and wastewater treatment plants. The information is based on a questionnaire sent to 70 water and wastewater treatment plants in 2012-2013. The questionnaire was prepared by the International Advanced Water Technologies Centre (IAWTC) and Lahti Development Company (LADEC). The questions dealt with an assessment of the present state, the need for changes, renovation, investments, and how to improve the efficiency of the operation by training and investments. A significant need to renew the old pipelines, constructions, and processes was clearly evident. The aggregated answers can be utilized in Russia as internal benchmarking in order to arrange training and plant visits, which were requested in many of the answers. Sharing this open report with the respondents can aid networking and awareness of HELCOM requirements which relate to waste water treatment plants discharging their waste water directly or indirectly into the Baltic Sea. The aim of this report is to provide information for Finnish small and medium size companies (SMEs) as regards possible water related exportation to different parts of Russia.
Resumo:
Emerging markets have come to play a significant role in the world, not only due to their strong economic growth but because they have been able to foster an increasing number of innovative high technology oriented firms. However, as the markets continue to change and develop, there remain many companies in emerging markets that struggle with their competitiveness and innovativeness. To improve competitive capabilities, many scholars have come to favor interfirm cooperation, which is perceived to help companies access new knowledge and complementary resources and, by so doing, enables them to catch up quickly with Western competitors. Regardless of numerous attempts by strategic management scholars, the research field remains very fragmented and lacks understanding on how and when interfirm cooperation contributes to firm performance and competiveness in emerging markets. Furthermore, the reasons why interfirm R&D sometimes succeeds but fails at other times frequently remain unidentified. This thesis combines the extant literature on competitive and cooperative strategy, dynamic capabilities, and R&D cooperation while studying interfirm R&D relationships in and between Russian manufacturing companies. Employing primary survey data, the thesis presents numerous novel findings regarding the effect of R&D cooperation and different types of R&D partner on firms’ exploration and exploitation performance. Utilizing a competitive strategy framework enables these effects to be explained in more detail, and especially why interfirm cooperation, regardless of its potential, has had a modest effect on the general competitiveness of emerging market firms. This thesis contributes especially to the strategic management literature and presents a more holistic perspective on the usefulness of cooperative strategy in emerging markets. It provides a framework through which it is possible to assess the potential impacts of different R&D cooperation partners and to clarify the causal relationships between cooperation, performance, and long term competitiveness.
Resumo:
Increasing renewable energy utilization is a challenge that is tried to be solved in different ways. One of the most promising options for renewable energy is different biomasses, and the bioenergy field offers numerous emerging business opportunities. The actors in the field have rarely all the needed know-how and resources for exploiting these opportunities, and thus it is reasonable to seize them in cooperation. Networking is not an easy task to carry out, however, and in addition to its advantages for the firms engaged, it sets numerous challenges as well. The development of a network is a result of several steps firms need to take. In order to gain optimal advantage of their networks, firms need to weigh out with whom, why and how they should cooperate. In addition, everything does not depend on the firms themselves, as several factors in the external environment set their own enablers and barriers for cooperation. The formation of a network around a business opportunity is thus a multiphase process. The objective of this thesis is to depict this process via a step-by-step analysis and thus increase understanding on the whole development path from an entrepreneurial opportunity to a successful business network. The empirical evidence has been gathered by discussing the opportunities of animal manure refinement to biogas and forest biomass utilization for heating in Finland. The thesis comprises two parts. The first part provides an overview of the study, and the second part includes five research publications. The results reveal that it is essential to identify and analyze all the steps in the development process of a network, and several frameworks are used in the thesis to analyze these steps. The frameworks combine the views of theory and practical experiences of empirical study, and thus give new multifaceted views for the discussion on SME networking. The results indicate that the ground for cooperation should be investigated adequately by taking account of the preconditions in all the three contexts in which the actors operate: the social context, the region and the institutional environment. In case the project advances to exploitation, the assets and objectives of the actors should be paired off, which sets a need for relationships and sub-networks differing in breadth and depth. Different relationships and networks require different kinds of maintenance and management. Moreover, the actors should have the capability to change the formality or strategy of the relationships if needed. The drivers for these changes come along with the changing environment, which causes changes in the objectives of the actors and this way in the whole network. Bioenergy as the empirical field of the study represents well an industrial field with many emerging opportunities, a motley group of actors, and sensitivity for fast changes.
Resumo:
The present study introduce two pretreatment technologies which are torrefaction and steam explosion, and compare energy balance for both technologies to investigate and compare the use of these technologies to improve pelletization. In this research, torrefaction and steam explosion pretreatments were accomplished on the mixed small diameter wood (70%) with moisture content of 40 %, and logging residues (30%) with moisture content of 45 % at temperature 230 ̊C, and treatment duration 10 min. Competing methods were evaluated, and the results showed higher volumetric energy for steam explosion pellet than torrefied pellet.
Resumo:
Waste incineration is becoming increasingly widespread method of waste disposal in China. Incineration plants mostly use grate and circular fluidized bed (CFB) technology. Waste combustion in cement production is also beginning to gradually increase. However, Chinese waste composition is causing problems for the energy utilization. Mechanical waste pre-treatment optimizes the combustion process and facilitates the energy recovery. The objective of this study is to identify how Western waste pre-treatment manufacturer could operate in Chinese markets. Chinese waste management industry is reviewed via PESTEL analysis. The current state and future predictions of grate and CFB incineration as well as cement manufacturing are monitored. Grate combustion, which requires lesser waste pre-treatment, is becoming more common at the expense of CFB incineration in China. The most promising future for waste treatment is in cement production industry. Waste treatment equipment manufacturer should try to create pilot projects with biggest cement producers with a view of growing co-operation in the future.
Resumo:
An electric system based on renewable energy faces challenges concerning the storage and utilization of energy due to the intermittent and seasonal nature of renewable energy sources. Wind and solar photovoltaic power productions are variable and difficult to predict, and thus electricity storage will be needed in the case of basic power production. Hydrogen’s energetic potential lies in its ability and versatility to store chemical energy, to serve as an energy carrier and as feedstock for various industries. Hydrogen is also used e.g. in the production of biofuels. The amount of energy produced during hydrogen combustion is higher than any other fuel’s on a mass basis with a higher-heating-value of 39.4 kWh/kg. However, even though hydrogen is the most abundant element in the universe, on Earth most hydrogen exists in molecular forms such as water. Therefore, hydrogen must be produced and there are various methods to do so. Today, the majority hydrogen comes from fossil fuels, mainly from steam methane reforming, and only about 4 % of global hydrogen comes from water electrolysis. Combination of electrolytic production of hydrogen from water and supply of renewable energy is attracting more interest due to the sustainability and the increased flexibility of the resulting energy system. The preferred option for intermittent hydrogen storage is pressurization in tanks since at ambient conditions the volumetric energy density of hydrogen is low, and pressurized tanks are efficient and affordable when the cycling rate is high. Pressurized hydrogen enables energy storage in larger capacities compared to battery technologies and additionally the energy can be stored for longer periods of time, on a time scale of months. In this thesis, the thermodynamics and electrochemistry associated with water electrolysis are described. The main water electrolysis technologies are presented with state-of-the-art specifications. Finally, a Power-to-Hydrogen infrastructure design for Lappeenranta University of Technology is presented. Laboratory setup for water electrolysis is specified and factors affecting its commissioning in Finland are presented.
Resumo:
The international recovered paper trade serves two important functions: increasing raw material availability in the paper and board industry and providing economic incentives to recycle. The purpose of this paper is to shed further light on emerging patterns in this trade by empirically analysing the changes in the bilateral trade flows of recycled paper between 1992 and 2008. According to our estimations, two important changes have taken place in the 1990s and 2000s. First, the growing importance of developing economies in global recycled paper trade plays a significant role in import demand as a determinant of trade flows. Second, the changes in global trade patterns necessitate investigating the transportation cost measures used in applied research.