61 resultados para Eddy Viscosity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kirjallisuusarvostelu

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Permanent magnet generators (PMG) represent the cutting edge technology in modern wind mills. The efficiency remains high (over 90%) at partial loads. To improve the machine efficiency even further, every aspect of machine losses has to be analyzed. Additional losses are often given as a certain percentage without providing any detailed information about the actual calculation process; meanwhile, there are many design-dependent losses that have an effect on the total amount of additional losses and that have to be taken into consideration. Additional losses are most often eddy current losses in different parts of the machine. These losses are usually difficult to calculate in the design process. In this doctoral thesis, some additional losses are identified and modeled. Further, suggestions on how to minimize the losses are given. Iron losses can differ significantly between the measured no-load values and the loss values under load. In addition, with embedded magnet rotors, the quadrature-axis armature reaction adds losses to the stator iron by manipulating the harmonic content of the flux. It was, therefore, re-evaluated that in salient pole machines, to minimize the losses and the loss difference between the no-load and load operation, the flux density has to be kept below 1.5 T in the stator yoke, which is the traditional guideline for machine designers. Eddy current losses may occur in the end-winding area and in the support structure of the machine, that is, in the finger plate and the clamping ring. With construction steel, these losses account for 0.08% of the input power of the machine. These losses can be reduced almost to zero by using nonmagnetic stainless steel. In addition, the machine housing may be subjected to eddy current losses if the flux density exceeds 1.5 T in the stator yoke. Winding losses can rise rapidly when high frequencies and 10–15 mm high conductors are used. In general, minimizing the winding losses is simple. For example, it can be done by dividing the conductor into transposed subconductors. However, this comes with the expense of an increase in the DC resistance. In the doctoral thesis, a new method is presented to minimize the winding losses by applying a litz wire with noninsulated strands. The construction is the same as in a normal litz wire but the insulation between the subconductors has been left out. The idea is that the connection is kept weak to prevent harmful eddy currents from flowing. Moreover, the analytical solution for calculating the AC resistance factor of the litz-wire is supplemented by including an end-winding resistance in the analytical solution. A simple measurement device is developed to measure the AC resistance in the windings. In the case of a litz-wire with originally noninsulated strands, vacuum pressure impregnation (VPI) is used to insulate the subconductors. In one of the two cases studied, the VPI affected the AC resistance factor, but in the other case, it did not have any effect. However, more research is needed to determine the effect of the VPI on litz-wire with noninsulated strands. An empirical model is developed to calculate the AC resistance factor of a single-layer formwound winding. The model includes the end-winding length and the number of strands and turns. The end winding includes the circulating current (eddy currents that are traveling through the whole winding between parallel strands) and the main current. The end-winding length also affects the total AC resistance factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Viime vuosien aikana tapahtunut nikkelin hinnan nouseminen on vaikuttanut austeniittis-ferriittisten ruostumattomien terästen, ns. duplex -terästen kehittämiseen. Niukkaseosteisemmissa lean duplex -teräksissä seostetun nikkelin määrää on vähennetty ja sitä on korvattu typellä ja mangaanilla. Nämä muutokset ko. terästen seostuksessa aiheuttavat haasteita hitsaukselle, erityisesti austeniitti-ferriitti -suhteen säilyttämisessä, sekä sitä kautta iskusitkeyden ja korroosio-ominaisuuksien säilyttämiselle. Suurempi typen osuus myös lisää teräksen hitsisulan viskositeettia, mikä heikentää juuripalkojen hitsauksessa tunkeumaa. Tässsä diplomityössä on tutkittu keinoja helpottaa paksujen (yli 20 mm) lean duplex -teräslevyjen hitsausta käytännön näkökulmasta, sekä parantaa hitsattujen levyjen iskusitkeyttä. Hitsauskokeilla löydettiin hitsausta helpottavia menetelmiä ja kokeista saatiin karsimalla valikoitua hitsausarvot, joilla pystytään hitsaamaan painelaitedirektiivin mukaisesti hyväksyttäviä hitsejä lean duplex -laatuihin LDX2101 ja UR2202.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis was to research how slurry’s viscosity and rheology affect to pumping in peristaltic hose pump and in eccentric progressive cavity pump. In addition, it was researched the formed pressure pulsation in hose pump. Pressure pulsation was studied by pumping different slurries and by using different pipe materials. Pressure and power curves were determined for both used pumps. It was also determined NPSHR curve for the progressive cavity pump. Literature part of the thesis considered to distribute fluids to different rheology types, as well as theories and models to identify different rheology types. Special attention was paid to non-Newtonian fluids, which were also used in experimental part of this thesis. In addition, the literature part discusses about pumps, parameters for pump sizing, and pressure pulsation in hose pump. Starch, bentonite, and carboxymethyl cellulose slurries were used in the experimental part of this thesis. The slurries were pumped with Flowrox peristaltic hose pump (LPP-T32) and eccentric progressive cavity pump (C10/10). From the each slurry was taken a sample, and the samples were analyzed for concentration, viscosity and rheology type. The used pipe materials in pressure pulsation experiments were steel and elastic, and it was also used a prototype of pulsation dampener. The pulsation experiments indicated that the elastic pipe and the prototype of pulsation dampener attenuated pressure pulsation better than the steel pipe at low pressure levels. The differences between different materials disappeared when pressure level and pump rotation speed increased. In slurry experiments, pulsation was different depending on rheology and viscosity of the slurry. According to experiments, the rheology did not significantly affect to pump power consumption or efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of computational fluid dynamics (CFD) and finite element analysis (FEA) has been growing rapidly in the various fields of science and technology. One of the areas of interest is in biomedical engineering. The altered hemodynamics inside the blood vessels plays a key role in the development of the arterial disease called atherosclerosis, which is the major cause of human death worldwide. Atherosclerosis is often treated with the stenting procedure to restore the normal blood flow. A stent is a tubular, flexible structure, usually made of metals, which is driven and expanded in the blocked arteries. Despite the success rate of the stenting procedure, it is often associated with the restenosis (re-narrowing of the artery) process. The presence of non-biological device in the artery causes inflammation or re-growth of atherosclerotic lesions in the treated vessels. Several factors including the design of stents, type of stent expansion, expansion pressure, morphology and composition of vessel wall influence the restenosis process. Therefore, the role of computational studies is crucial in the investigation and optimisation of the factors that influence post-stenting complications. This thesis focuses on the stent-vessel wall interactions followed by the blood flow in the post-stenting stage of stenosed human coronary artery. Hemodynamic and mechanical stresses were analysed in three separate stent-plaque-artery models. Plaque was modeled as a multi-layer (fibrous cap (FC), necrotic core (NC), and fibrosis (F)) and the arterial wall as a single layer domain. CFD/FEA simulations were performed using commercial software packages in several models mimicking the various stages and morphologies of atherosclerosis. The tissue prolapse (TP) of stented vessel wall, the distribution of von Mises stress (VMS) inside various layers of vessel wall, and the wall shear stress (WSS) along the luminal surface of the deformed vessel wall were measured and evaluated. The results revealed the role of the stenosis size, thickness of each layer of atherosclerotic wall, thickness of stent strut, pressure applied for stenosis expansion, and the flow condition in the distribution of stresses. The thicknesses of FC, and NC and the total thickness of plaque are critical in controlling the stresses inside the tissue. A small change in morphology of artery wall can significantly affect the distribution of stresses. In particular, FC is the most sensitive layer to TP and stresses, which could determine plaque’s vulnerability to rupture. The WSS is highly influenced by the deflection of artery, which in turn is dependent on the structural composition of arterial wall layers. Together with the stenosis size, their roles could play a decisive role in controlling the low values of WSS (<0.5 Pa) prone to restenosis. Moreover, the time dependent flow altered the percentage of luminal area with WSS values less than 0.5 Pa at different time instants. The non- Newtonian viscosity model of the blood properties significantly affects the prediction of WSS magnitude. The outcomes of this investigation will help to better understand the roles of the individual layers of atherosclerotic vessels and their risk to provoke restenosis at the post-stenting stage. As a consequence, the implementation of such an approach to assess the post-stented stresses will assist the engineers and clinicians in optimizing the stenting techniques to minimize the occurrence of restenosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Työn tavoitteena oli tutkia lämpökynttilän palo-ominaisuuksiin vaikuttavia tekijöitä. Työn taustalla on yhteistyö suomalaisen kynttilävalmistajan kanssa. Kynttilävalmistajan lämpökynttilöissään käyttämän raaka-aineen hinnan noustessa, on valmistaja kiinnostunut käyttämään edullisempia raaka-aineita. Palamisen kriteerit saavuttavan kynttilän valmistaminen markkinoilla olevista uusista raaka-aineista on havaittu olevan haastavaa, ja vaatii edelleen kehitystyötä. Teoriaosassa käytiin läpi kynttilänvalmistusta yleisesti, RAL-laatustandardin asettamat kriteerit lämpökynttilälle, palamiseen vaikuttavia tekijöitä sekä työn kokeellisessa osassa käytettyjen analyysimenetelmien periaatteet. Työn kokeellisessa osassa tutkittiin erilaisten kynttiläraaka-aineiden koostumusta ja ominaisuuksia sekä sydänlankojen rakennetta. Lisäksi tutkittiin, miten sydänlangan sisältämien säikeiden määrä, eri raaka-aineiden seossuhteiden muutos sekä jäähdytyslämpötilan muutos vaikuttavat lämpökynttilän palo-ominaisuuksiin. Työssä myös selvitettiin muutaman markkinoilla olevan kynttilän raaka-ainekoostumus. Tutkimuksissa havaittiin, että vaadittavan liekin korkeuden saavuttamiseksi viskositeetti on yksi raaka-aineen tärkeimmistä ominaisuuksista. Raaka-aineen viskositeetin kasvaessa tarvitaan paksumpi sydänlanka. Raaka-aineen viskositeetin kasvaessa liekin korkeus ei aina pienene, koska liekin korkeuteen vaikuttaa myös langalle tehty kemiallinen käsittely. Mitä korkeampi kynttilän liekki on, sitä suurempi on raaka-aineen kulutus eli palovuo ja tällöin liekin korkeus vaikuttaa myös kynttilän paloaikaan. Kokeissa havaittiin, että liekin korkeuden ollessa vakio, palovuo oli korkein steariinilla. Steariinin jälkeen tulivat palmuvaha ja parafiini. Tällöin parafiinia tarvittiin vähemmän vastaavan paloajan saavuttamiseksi. Nopean jäähdytyksen havaittiin vaikuttavan palmuvahan palovuohon alentavasti, vaikka jäähdytystavalla ei ollut vaikutusta liekin korkeuteen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Preparative liquid chromatography is one of the most selective separation techniques in the fine chemical, pharmaceutical, and food industries. Several process concepts have been developed and applied for improving the performance of classical batch chromatography. The most powerful approaches include various single-column recycling schemes, counter-current and cross-current multi-column setups, and hybrid processes where chromatography is coupled with other unit operations such as crystallization, chemical reactor, and/or solvent removal unit. To fully utilize the potential of stand-alone and integrated chromatographic processes, efficient methods for selecting the best process alternative as well as optimal operating conditions are needed. In this thesis, a unified method is developed for analysis and design of the following singlecolumn fixed bed processes and corresponding cross-current schemes: (1) batch chromatography, (2) batch chromatography with an integrated solvent removal unit, (3) mixed-recycle steady state recycling chromatography (SSR), and (4) mixed-recycle steady state recycling chromatography with solvent removal from fresh feed, recycle fraction, or column feed (SSR–SR). The method is based on the equilibrium theory of chromatography with an assumption of negligible mass transfer resistance and axial dispersion. The design criteria are given in general, dimensionless form that is formally analogous to that applied widely in the so called triangle theory of counter-current multi-column chromatography. Analytical design equations are derived for binary systems that follow competitive Langmuir adsorption isotherm model. For this purpose, the existing analytic solution of the ideal model of chromatography for binary Langmuir mixtures is completed by deriving missing explicit equations for the height and location of the pure first component shock in the case of a small feed pulse. It is thus shown that the entire chromatographic cycle at the column outlet can be expressed in closed-form. The developed design method allows predicting the feasible range of operating parameters that lead to desired product purities. It can be applied for the calculation of first estimates of optimal operating conditions, the analysis of process robustness, and the early-stage evaluation of different process alternatives. The design method is utilized to analyse the possibility to enhance the performance of conventional SSR chromatography by integrating it with a solvent removal unit. It is shown that the amount of fresh feed processed during a chromatographic cycle and thus the productivity of SSR process can be improved by removing solvent. The maximum solvent removal capacity depends on the location of the solvent removal unit and the physical solvent removal constraints, such as solubility, viscosity, and/or osmotic pressure limits. Usually, the most flexible option is to remove solvent from the column feed. Applicability of the equilibrium design for real, non-ideal separation problems is evaluated by means of numerical simulations. Due to assumption of infinite column efficiency, the developed design method is most applicable for high performance systems where thermodynamic effects are predominant, while significant deviations are observed under highly non-ideal conditions. The findings based on the equilibrium theory are applied to develop a shortcut approach for the design of chromatographic separation processes under strongly non-ideal conditions with significant dispersive effects. The method is based on a simple procedure applied to a single conventional chromatogram. Applicability of the approach for the design of batch and counter-current simulated moving bed processes is evaluated with case studies. It is shown that the shortcut approach works the better the higher the column efficiency and the lower the purity constraints are.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tehoelektroniikalta vaaditaan nykyään parempaa suorituskykyä entistä pienemmässä tilassa. Tämä luo haasteen riittävälle jäähdytykselle. Eräs ratkaisu on käyttää kaksifaasijäähdytystä, jolla aikaansaadaan tehokas lämmönsiirto komponenttien pinnalta. Lämmönsiirtonesteinä voidaan käyttää kylmäaineita tai muita alhaisessa lämpötilassa kiehuvia nesteitä. Tällaisille nesteille on tyypillistä alhainen höyrynpaine sekä matala viskositeetti. Nämä ominaisuudet tuovat haasteita nesteen pumppaukseen. Tässä työssä tarkastellaan R-134A:ta sekä Novec 7000:ta, perehdytään niiden fysikaalisiin ominaisuuksiin sekä materiaaliyhteensopivuuksiin ja näiden tietojen pohjalta etsitään sopivaa pumpputyyppiä kaksifaasijäähdytysjärjestelmään. Tehoelektroniikan jäähdytysjärjestelmän pumpun on oltava edullinen muuhun järjestelmään nähden. Tyypillinen kiertopumppu nestejäähdytysjärjestelmässä on pieni keskipakopumppu. Alhaisen kiehumispisteen vuoksi kavitointiriski kasvaa ja tämä voi vahingoittaa pumppua. Myös matala viskositeetti tuo haasteita vuotoherkkyyden kasvamisen myötä, joten mekaanisilla aksiaalitiivisteillä varustetut pumput eivät ole pitkäikäisiä. Kylmäainejärjestelmiin tarkoitetut pumput ovat arvokkaita, eikä näin ollen sovellu edullisiin jäähdytysjärjestelmiin. Tässä työssä käydään läpi erilaisia pumpputyyppejä, jotka voisivat soveltua pitkäikäiseen pumppaukseen ilman huoltotöitä. Näiden tietojen perusteella kehitetään edullista ja pitkäikäistä pumppua pieniin kaksifaasijäähdytysjärjestelmiin nesteiden fysikaaliset ominaisuudet huomioon ottaen. Kehitetyn pumpun ominaisuuksia ja kustannuksia vertaillaan kaupallisiin ratkaisuihin ottaen huomioon sarjavalmistus. Itse valmistettuna pienelle sisäryntöiselle hammaspyöräpumpulle jää hintaa alle kymmenesosa markkinoilta löytyviin kylmäaineille soveltuviin pumppuun.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissolving cellulose is the first main step in preparing novel cellulosicmaterials. Since cellulosic fibres cannot be easily dissolved in water-based solvents, fibres were pretreated with ethanol-acid solution prior to the dissolution. Solubility and changes on the surface of the fibres were studied with microscopy and capillary viscometry. After the treatment, the cellulose fibres were soluble in alkaline urea-water solvent. The nature of this viscous solution was studied rheologically. Cellulose microspheres were prepared by extruding the alkaline cellulose solution through the needle into an acidic medium. By altering the temperature and acidity of the mediumit was possible to adjust the specific surface area and pore sizes of themicrospheres. A typical skin-core structure was found in all samples. Microspheres were oxidised in order to introduce anionic carboxylic acid groups (AGs). Anionic microspheres are more hydrophilic; their water-uptake increased 25 times after oxidation and they could swell almost to their original state (88%) after drying and shrinking. Swelling was studied in simulated physiological environments, corresponding to stomach acid and intestines (pH 1.2-7.4). Oxidised microspheres were used as a drug carriers. They demonstrated a highmass uniformity, which would enable their use for personalised dosing among different patients, including children. The drug was solidified in microspheres in amorphous form. This enhanced solubility and could be used for more challenging drugs with poor solubility. The pores of themicrospheres also remained open after the drug was loaded and they were dried. Regardless of the swelling, the drug was released at a constant rate in all environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Permanent magnet materials are nowadays widely used in the electrical machine manufacturing industry. Eddy current loss models of permanent magnets used in electrical machines are frequently discussed in research papers. In magnetic steel materials we have, in addition to eddy current losses, hysteresis losses when AC or a rotating flux travels through the material. Should a similar phenomenon also be taken into account in calculating the losses of permanent magnets? Actually, every now and then authors seem to assume that some significant hysteresis losses are present in rotating machine PMs. This paper studies the mechanisms of possible hysteresis losses in PMs and their role in PMs when used in rotating electrical machines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Työssä tutkittiin palmupohjaisten raaka-aineiden soveltuvuutta lämpökynttilän valmistukseen steariinin ja parafiinin kanssa. Palmupohjaiset raaka-aineet ovat halvempia kuin steariini ja parafiini, joten raaka-aineen korvaaminen palmupohjaisilla raaka-aineilla voisi tuoda säästöä kynttilänvalmistajalle. Lisäksi niillä voidaan vaikuttaa lämpökynttilän ominaisuuksiin. Teoriaosassa käsiteltiin lämpökynttilän raaka-aineista steariini, parafiini ja palmusteariini. Osassa selitettiin RAL-laatustandardin Quality Mark Candles vaatimukset lämpökynttilälle sekä valuastialle ja keskusteltiin valulämpötilan, jäähdytyksen, viskositeetin ja haaroittuneiden yhdisteiden lukumäärän vaikutuksesta lämpökynttilän koostumukseen. Kokeellisessa osassa valmistettiin lämpökynttilöitä steariinin ja palmupohjaisten raaka-aineiden seoksista palmuraaka-aineiden määrillä 10, 20 ja 30 m- %:a. Parafiinin ja palmusteariinin sekä palmun mid-fraktion seokset valmistettiin palmuraaka-aineiden osuuksilla 10, 20, 40 ja 50 m- %:a ja myös palmusteariinin soft-fraktiolla kokeiltiin seosta 50 m- %:lla. Steariinin ja palmupohjaisten raaka-aineiden seokset eivät toimineet ainakaan käytetyillä sydänlangoilla. Liekinkorkeudet olivat alhaisia eivätkä visuaaliset vaatimukset täyttyneet. Parafiinin ja palmupohjaisten raaka-aineiden seoksista valmistetut kynttilät paloivat ideaalisesti palmuraaka-aineiden osuuksilla 35 – 50 m- %:a. Tulosten perusteella fraktion valinnalla ei näyttänyt olevan merkitystä, mutta palmusteariini on ominaisuuksiensa puolesta kynttilänvalmistukseen soveltuvin. Liekinkorkeus ja palovuo laskivat lineaarisesti palmuraaka-aineen osuuden kasvaessa parafiinikynttilässä.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly-L-lactide (PLLA) is a widely used sustainable and biodegradable alternative to replace synthetic non-degradable plastic materials in the packaging industry. Conversely, its processing properties are not always optimal, e.g. insufficient melt strength at higher temperatures (necessary in extrusion coating processes). This thesis reports on research to improve properties of commercial PLLA grade (3051D from NatureWorks), to satisfy and extend end-use applications, such as food packaging by blending with modified PLLA. Adjustment of the processability by chain branching of commercial poly-L-lactide initiated by peroxide was evaluated. Several well-defined branched structures with four arms (sPLLA) were synthesized using pentaerythritol as a tetra-functional initiator. Finally, several block copolymers consisting of polyethylene glycol and PLLA (i.e. PEGLA) were produced to obtain a well extruded material with improved heat sealing properties. Reactive extrusion of poly-L-lactide was carried out in the presence of 0.1, 0.3 and 0.5 wt% of various peroxides [tert-butyl-peroxybenzoate (TBPB), 2,5-dimethyl-2,5-(tert-butylperoxy)-hexane (Lupersol 101; LOL1) and benzoyl peroxide (BPO)] at 190C. The peroxide-treated PLLAs showed increased complex viscosity and storage modulus at lower frequencies, indicating the formation of branched/cross linked architectures. The material property changes were dependent on the peroxide, and the used peroxide concentration. Gel fraction analysis showed that the peroxides, afforded different gel contents, and especially 0.5 wt% peroxide, produced both an extremely high molar mass, and a cross linked structure, not perhaps well suited for e.g. further use in a blending step. The thermal behavior was somewhat unexpected as the materials prepared with 0.5 wt% peroxide showed the highest ability for crystallization and cold crystallization, despite substantial cross linking. The peroxide-modified PLLA, i.e. PLLA melt extruded with 0.3 wt% of TBPB and LOL1 and 0.5 wt% BPO was added to linear PLLA in ratios of 5, 15 and 30 wt%. All blends showed increased zero shear viscosity, elastic nature (storage modulus) and shear sensitivity. All blends remained amorphous, though the ability of annealing was improved slightly. Extrusion coating on paperboard was conducted with PLLA, and peroxide-modified PLLA blends (90:10). All blends were processable, but only PLLA with 0.3 wt% of LOL1 afforded a smooth high quality surface with improved line speed. Adhesion levels between fiber and plastic, as well as heat seal performance were marginally reduced compared with pure 3051D. The water vapor transmission measurements (WVTR) of the blends containing LOL1 showed acceptable levels, only slightly lower than for comparable PLLA 3051D. A series of four-arm star-shaped poly-L-lactide (sPLLA) with different branch length was synthesized by ring opening polymerization (ROP) of L-lactide using pentaerythritol as initiator and stannous octoate as catalyst. The star-shaped polymers were further blended with its linear resin and studied for their melt flow and thermal properties. Blends containing 30 wt% of sPLLA with low molecular weight (30 wt%; Mwtotal: 2500 g mol-1 and 15000 g mol-1) showed lower zero shear viscosity and significantly increased shear thinning, while at the same time slightly increased crystallization of the blend. However, the amount of crystallization increased significantly with the higher molecular weight sPLLA, therefore the star-shaped structure may play a role as nucleating agent. PLLA-polyethylene glycol–PLLA triblock copolymers (PEGLA) with different PLLA block length were synthesized and their applicability as blends with linear PLLA (3051D NatureWorks) was investigated with the intention of improving heat-seal and adhesion properties of extrusion-coated paperboard. PLLA-PEG-PLLA was obtained by ring opening polymerization (ROP) of L-lactide using PEG (molecular weight 6000 g mol-1) as an initiator, and stannous octoate as catalyst. The structures of the PEGLAs were characterized by proton nuclear magnetic resonance spectroscopy (1H-NMR). The melt flow and thermal properties of all PEGLAs and their blends were evaluated using dynamic rheology, and differential scanning calorimeter (DSC). All blends containing 30 wt% of PEGLAs showed slightly higher zero shear viscosity, higher shear thinning and increased melt elasticity (based on tan delta). Nevertheless, no significant changes in thermal properties were distinguished. High molecular weight PEGLAs were used in extrusion coating line with 3051D without problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monitoring and control of hydrogen sulfide (H2S) level is of great interest for a wide range of application areas including food quality control, defense and antiterrorist applications and air quality monitoring e.g. in mines. H2S is a very poisonous and flammable gas. Exposure to low concentrations of H2S can result in eye irritation, a sore throat and cough, shortness of breath, and fluid retention in the lungs. These symptoms usually disappear in a few weeks. Long-term, low-level exposure may result in fatigue, loss of appetite, headache, irritability, poor memory, and dizziness. Higher concentrations of 700 - 800 ppm tend to be fatal. H2S has a characteristic smell of rotten egg. However, because of temporary paralysis of olfactory nerves, the smelling capability at concentrations higher than 100 ppm is severely compromised. In addition, volatile H2S is one of the main products during the spoilage of poultry meat in anaerobic conditions. Currently, no commercial H2S sensor is available which can operate under anaerobic conditions and can be easily integrated in the food packaging. This thesis presents a step-wise progress in the development of printed H2S gas sensors. Efforts were made in the formulation, characterization and optimization of functional printable inks and coating pastes based on composites of a polymer and a metal salt as well as a composite of a metal salt and an organic acid. Different processing techniques including inkjet printing, flexographic printing, screen printing and spray coating were utilized in the fabrication of H2S sensors. The dispersions were characterized by measuring turbidity, surface tension, viscosity and particle size. The sensing films were characterized using X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy and an electrical multimeter. Thin and thick printed or coated films were developed for gas sensing applications with the aim of monitoring the H2S concentrations in real life applications. Initially, a H2S gas sensor based on a composite of polyaniline and metal salt was developed. Both aqueous and solvent-based dispersions were developed and characterized. These dispersions were then utilized in the fabrication of roll-to-roll printed H2S gas sensors. However, the humidity background, long term instability and comparatively lower detection limit made these sensors less favourable for real practical applications. To overcome these problems, copper acetate based sensors were developed for H2S gas sensing. Stable inks with excellent printability were developed by tuning the surface tension, viscosity and particle size. This enabled the formation of inkjet-printed high quality copper acetate films with excellent sensitivity towards H2S. Furthermore, these sensors showed negligible humidity effects and improved selectivity, response time, lower limit of detection and coefficient of variation. The lower limit of detection of copper acetate based sensors was further improved to sub-ppm level by incorporation of catalytic gold nano-particles and subsequent plasma treatment of the sensing film. These sensors were further integrated in an inexpensive wirelessly readable RLC-circuit (where R is resistor, L is inductor and C is capacitor). The performance of these sensors towards biogenic H2S produced during the spoilage of poultry meat in the modified atmosphere package was also demonstrated in this thesis. This serves as a proof of concept that these sensors can be utilized in real life applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluid flow behaviour in porous media is a conundrum. Therefore, this research is focused on filtration-volumetric characterisation of fractured-carbonate sediments, coupled with their proper simulation. For this reason, at laboratory rock properties such as pore volume, permeability and porosity are measured, later phase permeabilities and oil recovery in function of flow rate are assessed. Furthermore, the rheological properties of three oils are measured and analysed. Finally based on rock and fluid properties, a model using COMSOL Multiphysics is built in order to compare the experimental and simulated results. The rock analyses show linear relation between flow rate and differential pressure, from which phase permeabilities and pressure gradient are determined, eventually the oil recovery under low and high flow rate is established. In addition, the oils reveal thixotropic properties as well as non-Newtonian behaviour described by Bingham model, consequently Carreau viscosity model for the used oil is given. Given these points, the model for oil and water is built in COMSOL Multiphysics, whereupon successfully the reciprocity between experimental and simulated results is analysed and compared. Finally, a two-phase displacement model is elaborated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this Master’s Thesis work the rheological properties of different polysaccharide gels have been studied. The results of this study are used as a starting point for further investigations of potential applications. In order to understand rheological behavior of studied materials, the commercial hydrocolloids such as sodium carboxymethyl cellulose, xanthan gum and guar gum were used as reference and comparison material for rheological studies. As a part the rheological research the development and implementation of proper measurement methods for studied materials were carried out. In the literature review, short introductions of studied materials and application areas of rheological modifiers are summarized. In addition, basic rheological concepts and key fundamentals are explained. In the experimental part the focus was on the rheological characterization of aqueous suspensions of studied materials. Especially, gel strength and solution stability were investigated. The rheological measurements included both rotational and oscillatory measurements in different conditions, where several chemical and physical properties were measured with Anton Paar MCR302 dynamic rotational rheometer. Studied polysaccharide gels can be clearly defined to be shear thinning and thixotropic materials. They have strong gel forming properties even at low concentrations, which explains the superior thickening behavior for some of the samples. Along with rheological characterization of selected materials the factors behind different phenomena were investigated. To reveal value and potential use of polysaccharide gels the influence of various factors such as concentration, temperature and ionic strength were determined. The measurements showed a clear difference between studied materials under investigated external parameters.