60 resultados para ELECTRICAL IMPEDANCE TOMOGRAPHY
Resumo:
The power rating of wind turbines is constantly increasing; however, keeping the voltage rating at the low-voltage level results in high kilo-ampere currents. An alternative for increasing the power levels without raising the voltage level is provided by multiphase machines. Multiphase machines are used for instance in ship propulsion systems, aerospace applications, electric vehicles, and in other high-power applications including wind energy conversion systems. A machine model in an appropriate reference frame is required in order to design an efficient control for the electric drive. Modeling of multiphase machines poses a challenge because of the mutual couplings between the phases. Mutual couplings degrade the drive performance unless they are properly considered. In certain multiphase machines there is also a problem of high current harmonics, which are easily generated because of the small current path impedance of the harmonic components. However, multiphase machines provide special characteristics compared with the three-phase counterparts: Multiphase machines have a better fault tolerance, and are thus more robust. In addition, the controlled power can be divided among more inverter legs by increasing the number of phases. Moreover, the torque pulsation can be decreased and the harmonic frequency of the torque ripple increased by an appropriate multiphase configuration. By increasing the number of phases it is also possible to obtain more torque per RMS ampere for the same volume, and thus, increase the power density. In this doctoral thesis, a decoupled d–q model of double-star permanent-magnet (PM) synchronous machines is derived based on the inductance matrix diagonalization. The double-star machine is a special type of multiphase machines. Its armature consists of two three-phase winding sets, which are commonly displaced by 30 electrical degrees. In this study, the displacement angle between the sets is considered a parameter. The diagonalization of the inductance matrix results in a simplified model structure, in which the mutual couplings between the reference frames are eliminated. Moreover, the current harmonics are mapped into a reference frame, in which they can be easily controlled. The work also presents methods to determine the machine inductances by a finite-element analysis and by voltage-source inverters on-site. The derived model is validated by experimental results obtained with an example double-star interior PM (IPM) synchronous machine having the sets displaced by 30 electrical degrees. The derived transformation, and consequently, the decoupled d–q machine model, are shown to model the behavior of an actual machine with an acceptable accuracy. Thus, the proposed model is suitable to be used for the model-based control design of electric drives consisting of double-star IPM synchronous machines.
Resumo:
ABSTRACT Maria Peltola Electrical status epilepticus during sleep – Continuous spikes and waves during sleep Department of Clinical Neurophysiology, University of Turku Department of Clinical Neurophysiology and Department of Pediatric Neurology, Children’s Hospital, Helsinki University Central Hospital Annales Universitatis Turkuensis, Medica-Odontologica, Turku, Finland, 2014 Background: Electrical status epilepticus during sleep (ESES) is an EEG phenomenon of frequent spikes and waves occurring in slow sleep. ESES relates to cognitive deterioration in heterogeneous childhood epilepsies. Validated methods to quantitate ESES are missing. The clinical syndrome, called epileptic encephalopathy with continuous spikes and waves during sleep (CSWS) is pharmacoresistant in half of the patients. Limited data exists on surgical treatment of CSWS. Aims and methods: The effects of surgical treatment were studied by investigating electroclinical outcomes in 13 operated patients (nine callosotomies, four resections) with pharmacoresistant CSWS and cognitive decline. Secondly, an objective paradigm was searched for assessing ESES by the semiautomatic quantification of spike index (SI) and measuring spike strength from EEG. Results: Postoperatively, cognitive deterioration was stopped in 12 (92%) patients. Three out of four patients became seizure-free after resective surgery. Callosotomy resulted in greater than 90% reduction of atypical absences in six out of eight patients. The preoperative propagation of ESES from one hemisphere to the other was associated with a good response. Semiautomatic quantification of SI was a robust method when the maximal interspike interval of three seconds was used to determine the “continuous” discharge in ten EEGs. SI of the first hour of sleep appeared representative of the whole night SI. Furthermore, the spikes’ root mean square was found to be a stable measure of spike strength when spatially integrated over multiple electrodes during steady NREM sleep. Conclusions: Patients with pharmacoresistant CSWS, based on structural etiology, may benefit from resective surgery or corpus callosotomy regarding both seizure outcome and cognitive prognosis. The semiautomated SI quantification, with proper userdefined settings and the new spatially integrated measure of spike strength, are robust and promising tools for quantifying ESES. Keywords: Electrical status epilepticus during sleep, ESES, continuous spikes and waves during sleep, CSWS, epilepsy surgery, spike index, spike strength, RMS TIIVISTELMÄ Maria Peltola Unenaikainen sähköinen status epilepticus Kliininen neurofysiologia, Turun yliopisto Kliininen neurofysiologia ja lastenneurologia, Lasten ja nuorten sairaala, Helsingin yliopistollinen keskussairaala Annales Universitatis Turkuensis, Medica-Odontologica, Turku, Suomi, 2014 Tausta: Sähköinen status epilepticus unessa (ESES) on aivosähkökäyrä (EEG)-ilmiö, jossa hidasaaltounen aikana esiintyy tiheä piikkihidasaaltopurkaus. ESES:n kvantifioimiseen ei ole olemassa validoituja menetelmiä. ESES on liitetty kognitiivisen tason laskuun ja tällöin puhutaan CSWS (continuous spikes and waves during sleep) - oireyhtymästä. CSWS ei vastaa lääkehoitoon puolella potilaista ja sen epilepsiakirurgisesta hoidosta on olemassa vain vähän tietoa. Tavoitteet ja menetelmät: Selvitimme retrospektiivisesti epilepsiakirurgian vaikusta elektrokliinisiin löydöksiin 13:lla lääkeresistenttiä CSWS-oireyhtymää sairastavalla lapsella, joilla oli rakenteellinen aivojen poikkeavuus. Toinen tavoite oli löytää objektiivinen puoliautomaattinen tapa mitata purkauksen määrää ja piikkien voimakkuutta EEG:stä. Tulokset: Kognitiivisen tason jatkuva heikentyminen loppui 12 (92 %) potilaalla leikkauksen jälkeen. Kolme neljästä resektiopotilaasta tuli kohtauksettomaksi. Kallosotomian jälkeen kuudella kahdeksasta potilaasta päivittäiset kohtaukset vähenivät yli 90 %:lla. Purkauksen leviäminen leikkausta edeltävästi vain yhdestä hemisfääristä toiseen liittyi hyvään leikkaushoitovasteeseen. Piikki-indeksi, jossa käytetään jatkuvan purkauksen määritelmänä maksimissaan kolmea sekuntia piikkien välillä, osoittautui luotettavaksi menetelmäksi ESES:n kvantifioimiseen. Useammasta elektrodista integroitu piikkien neliöllinen keskiarvo oli piikin voimakkuuden vakaa mitta häiriintymättömässä NREM-unessa. Päätelmät: Lääkehoidolle vastaamatonta CSWS:ää sairastavat potilaat, joilla on rakenteellinen aivopoikkeavuus ja yhdensuuntainen purkauksen leviämismalli, näyttävät kohtausten vähenemisen lisäksi hyötyvän epilepsiakirurgiasta kognitiivisesti. Puoliautomaattinen piikki-indeksin kvantifiointi sopivilla käyttäjäasetuksilla ja uusi spatiaalisesti integroitu piikin voimakkuuden mittari ovat stabiileja ja lupaavia ESES:n kvantitatiivisia mittareita. Avainsanat: Unenaikainen sähköinen status epilepticus, ESES, CSWS, epilepsiakirurgia, piikki-indeksi, piikin voimakkuus, neliöllinen keskiarvo
Resumo:
Demand for increased energy efficiency has put an immense need for novel energy efficient systems. Electrical machines are considered as a much matured technology. Further improvement in this technology needs of finding new material to incorporate in electrical machines. Progress of carbon nanotubes research over the latest decade can open a new horizon in this aspect. Commonly known as ‘magic material’, carbon nanotubes (CNTs) have promising material properties that can change considerably the course of electrical machine design. It is believed that winding material based on carbon nanotubes create the biggest hope for a giant leap of modern technology and energy efficient systems. Though carbon nanotubes (CNTs) have shown amazing properties theoretically and practically during the latest 20 years, to the best knowledge of the author, no research has been carried out to find the future possibilities of utilizing carbon nanotubes as conductors in rotating electrical machines. In this thesis, the possibilities of utilizing carbon nanotubes in electrical machines have been studied. The design changes of electrical machine upon using carbon nanotubes instead of copper have been discussed vividly. A roadmap for this carbon nanotube winding machine has been discussed from synthesis, manufacturing and operational points of view.
Resumo:
Potential impacts of electrical capacity market design on capacity mobility and end use customer pricing are analyzed. Market rules and historical evolution are summarized to provide a background for the analysis. The summarized rules are then examined for impacts on capacity mobility. A summary of the aspects of successful capacity markets is provided. Two United States market regions are chosen for analysis based upon their market history and proximity to each other. The MISO region is chosen due to recent developments in capacity market mechanisms. The PJM region neighbors the MISO region and is similar in size and makeup. The PJM region has had a capacity market mechanism for over a decade and allows for a controlled comparison of the MISO region’s developments. Capacity rules are found to have an impact on the mobility of capacity between regions. Regulatory restrictions and financial penalties for the movement of capacity between regions are found which effectively hinder such mobility. Capacity market evolution timelines are formed from the historical evolution previously summarized and compared to historical pricing to inspect for a correlation. No direct and immediate impact on end use customer pricing was found due to capacity market design. The components of end use customer pricing are briefly examined.
Resumo:
Permanent magnet materials are nowadays widely used in the electrical machine manufacturing industry. Eddy current loss models of permanent magnets used in electrical machines are frequently discussed in research papers. In magnetic steel materials we have, in addition to eddy current losses, hysteresis losses when AC or a rotating flux travels through the material. Should a similar phenomenon also be taken into account in calculating the losses of permanent magnets? Actually, every now and then authors seem to assume that some significant hysteresis losses are present in rotating machine PMs. This paper studies the mechanisms of possible hysteresis losses in PMs and their role in PMs when used in rotating electrical machines.
Resumo:
Potentiometric sensors are very attractive tools for chemical analysis because of their simplicity, low power consumption and low cost. They are extensively used in clinical diagnostics and in environmental monitoring. Modern applications of both fields require improvements in the conventional construction and in the performance of the potentiometric sensors, as the trends are towards portable, on-site diagnostics and autonomous sensing in remote locations. The aim of this PhD work was to improve some of the sensor properties that currently hamper the implementation of the potentiometric sensors in modern applications. The first part of the work was concentrated on the development of a solid-state reference electrode (RE) compatible with already existing solid-contact ion-selective electrodes (ISE), both of which are needed for all-solid-state potentiometric sensing systems. A poly(vinyl chloride) membrane doped with a moderately lipophilic salt, tetrabutylammonium-tetrabutylborate (TBA-TBB), was found to show a satisfactory stability of potential in sample solutions with different concentrations. Its response time was nevertheless slow, as it required several minutes to reach the equilibrium. The TBA-TBB membrane RE worked well together with solid-state ISEs in several different situations and on different substrates enabling a miniature design. Solid contacts (SC) that mediate the ion-to-electron transduction are crucial components of well-functioning potentiometric sensors. This transduction process converting the ionic conduction of an ion-selective membrane to the electronic conduction in the circuit was studied with the help of electrochemical impedance spectroscopy (EIS). The solid contacts studied were (i) the conducting polymer (CP) poly(3,4-ethylienedioxythiophene) (PEDOT) and (ii) a carbon cloth having a high surface area. The PEDOT films were doped with a large immobile anion poly(styrene sulfonate) (PSS-) or with a small mobile anion Cl-. As could be expected, the studied PEDOT solid-contact mediated the ion-toelectron transduction more efficiently than the bare glassy carbon substrate, onto which they were electropolymerized, while the impedance of the PEDOT films depended on the mobility of the doping ion and on the ions in the electrolyte. The carbon cloth was found to be an even more effective ion-to-electron transducer than the PEDOT films and it also proved to work as a combined electrical conductor and solid contact when covered with an ion-selective membrane or with a TBA-TBB-based reference membrane. The last part of the work was focused on improving the reproducibility and the potential stability of the SC-ISEs, a problem that culminates to the stability of the standard potential E°. It was proven that the E° of a SC-ISE with a conducting polymer as a solid contact could be adjusted by reducing or oxidizing the CP solid contact by applying current pulses or a potential to it, as the redox state of the CP solid-contact influences the overall potential of the ISE. The slope and thus the analytical performance of the SC-ISEs were retained despite the adjustment of the E°. The shortcircuiting of the SC-ISE with a conventional large-capacitance RE was found to be a feasible instrument-free method to control the E°. With this method, the driving force for the oxidation/reduction of the CP was the potential difference between the RE and the SC-ISE, and the position of the adjusted potential could be controlled by choosing a suitable concentration for the short-circuiting electrolyte. The piece-to-piece reproducibility of the adjusted potential was promising, and the day-today reproducibility for a specific sensor was excellent. The instrumentfree approach to control the E° is very attractive considering practical applications.
Resumo:
Electrical machines have significant improvement potential. Nevertheless, the field is characterized by incremental innovations. Admittedly, steady improvement has been achieved, but no breakthrough development. Radical development in the field would require the introduction of new elements, such that may change the whole electrical machine industry system. Recent technological advancements in nanomaterials have opened up new horizons for the macroscopic application of carbon nanotube (CNT) fibres. With values of 100 MS/m measured on individual CNTs, CNT fibre materials hold promise for conductivities far beyond those of metals. Highly conductive, lightweight and strong CNT yarn is finally within reach; it could replace copper as a potentially better winding material. Although not yet providing low resistivity, the newest CNT yarn offers attractive perspectives for accelerated efficiency improvement of electrical machines. In this article, the potential for using new CNT materials to replace copper in machine windings is introduced. It does so, firstly, by describing the environment for a change that could revolutionize the industry and, secondly, by presenting the breakthrough results of a prototype construction. In the test motor, which is to our knowledge the first in its kind, the presently most electrically conductive carbon nanotube yarn replaces usual copper in the windings.
Resumo:
Coronary artery disease is an atherosclerotic disease, which leads to narrowing of coronary arteries, deteriorated myocardial blood flow and myocardial ischaemia. In acute myocardial infarction, a prolonged period of myocardial ischaemia leads to myocardial necrosis. Necrotic myocardium is replaced with scar tissue. Myocardial infarction results in various changes in cardiac structure and function over time that results in “adverse remodelling”. This remodelling may result in a progressive worsening of cardiac function and development of chronic heart failure. In this thesis, we developed and validated three different large animal models of coronary artery disease, myocardial ischaemia and infarction for translational studies. In the first study the coronary artery disease model had both induced diabetes and hypercholesterolemia. In the second study myocardial ischaemia and infarction were caused by a surgical method and in the third study by catheterisation. For model characterisation, we used non-invasive positron emission tomography (PET) methods for measurement of myocardial perfusion, oxidative metabolism and glucose utilisation. Additionally, cardiac function was measured by echocardiography and computed tomography. To study the metabolic changes that occur during atherosclerosis, a hypercholesterolemic and diabetic model was used with [18F] fluorodeoxyglucose ([18F]FDG) PET-imaging technology. Coronary occlusion models were used to evaluate metabolic and structural changes in the heart and the cardioprotective effects of levosimendan during post-infarction cardiac remodelling. Large animal models were used in testing of novel radiopharmaceuticals for myocardial perfusion imaging. In the coronary artery disease model, we observed atherosclerotic lesions that were associated with focally increased [18F]FDG uptake. In heart failure models, chronic myocardial infarction led to the worsening of systolic function, cardiac remodelling and decreased efficiency of cardiac pumping function. Levosimendan therapy reduced post-infarction myocardial infarct size and improved cardiac function. The novel 68Ga-labeled radiopharmaceuticals tested in this study were not successful for the determination of myocardial blood flow. In conclusion, diabetes and hypercholesterolemia lead to the development of early phase atherosclerotic lesions. Coronary artery occlusion produced considerable myocardial ischaemia and later infarction following myocardial remodelling. The experimental models evaluated in these studies will enable further studies concerning disease mechanisms, new radiopharmaceuticals and interventions in coronary artery disease and heart failure.
Resumo:
Optical coherence tomography (OCT) is a novel intracoronary imaging application for the assessment of native lesions and coronary stents. The purpose of this thesis was to evaluate the safety and feasibility of frequency-domain OCT (FD-OCT) based on experiences of the Satakunta Central Hospital (I). Early vascular healing was evaluated after implantation of endothelial progenitor cell capturing (II) and bio-active titanium-nitride-oxide coated stents (III) in two studies, each with 20 patients. Vascular healing was also compared after implantation of bio-active and everolimus-eluting stents on 28 patients after 9-month follow-up (IV). Long-term vascular healing of bio-active and paclitaxel-eluting stents was assessed in the last study with 18 patients (V). The results indicate that FD-OCT is safe and feasible (I). Both bio-active and endothelial progenitor cell capturing stents showed near-complete endothelialisation after one-month follow-up, which is desirable when prolonged dual anti-platelet therapy needs to be avoided after stenting (II and III). Endothelialisation of bio-active stents showed a predictable pattern at mid-term and long-term follow up (IV and V). Endothelialisation of everolimus-eluting stents was not complete at 9 months follow-up, which may suggest that interruption of dual antiplatelet therapy at this time point may not be safe (IV). Finally, delayed vascular healing may be present in patients treated with paclitaxel-eluting stents as long as 4 years from implantation, which reinforces the previously raised concerns on the long-term safety of this device (V).
Resumo:
Today, renewable energy technologies and modern power electronics have made it feasible to implement low voltage direct current (LVDC) microgrids (MGs) ca-pable to island operation. Such LVDC networks are particularly useful in remote areas. However, there are still pending issues in island operated LVDC MGs like electrical safety and controlled operation, which should be addressed before wide-scale implementation. This thesis is focused on the overall protection of an island operated LVDC network concept, including protection against electrical shocks, mains equipment protection and protection of photovoltaic (PV) power sources and battery energy storage systems (BESSs). The topic is approached through ex-amination of the safety hazards and the appropriate methods to protect against them, comprising considerations for earthing system selection and realisation of the protection system.
Resumo:
Global energy consumption has been increasing yearly and a big portion of it is used in rotating electrical machineries. It is clear that in these machines energy should be used efficiently. In this dissertation the aim is to improve the design process of high-speed electrical machines especially from the mechanical engineering perspective in order to achieve more reliable and efficient machines. The design process of high-speed machines is challenging due to high demands and several interactions between different engineering disciplines such as mechanical, electrical and energy engineering. A multidisciplinary design flow chart for a specific type of high-speed machine in which computer simulation is utilized is proposed. In addition to utilizing simulation parallel with the design process, two simulation studies are presented. The first is used to find the limits of two ball bearing models. The second is used to study the improvement of machine load capacity in a compressor application to exceed the limits of current machinery. The proposed flow chart and simulation studies show clearly that improvements in the high-speed machinery design process can be achieved. Engineers designing in high-speed machines can utilize the flow chart and simulation results as a guideline during the design phase to achieve more reliable and efficient machines that use energy efficiently in required different operation conditions.
Resumo:
The impact of ventricular rate (VR) on the outcome of electrical cardioversion (ECV) of acute atrial fibrillation (AF) is currently unknown. We aimed to determine the effect of VR during acute AF on the success of ECV, recurrence of AF and occurrence of post-cardioversion complications in 30 days follow-up. All ECVs performed in patients with acute atrial fibrillation lasting <48 hours in 2 Finnish university hospitals during 2003-2010 and 1 central hospital during 2010 were retrospectively identified. A total of 6,624 ECVs were performed in 2,821 consecutive patients. VR≤60 BPM was defined low and VR≥160 BPM high. The median VR before ECV was 109 BPM. The success rate of ECV was 94.2%. Bradycardia occurred in 62 (0.9%) and thromboembolic complications in 39 (0.6%) ECVs. Low VR was observed before 75 (1.1%) ECVs and male sex was its only independent predictor. High VR was observed in 165 (2.5%) ECVs. The independent predictors of high VR were younger age, <12 h episode duration, no previous history of AF and alcohol abuse. Low or high VR were not related to the success of ECV, incidence of thromboembolic or bradycardic complications, or recurrence of AF, although VR was significantly (p<0.001) lower in the patients in whom AF recurred. In conclusion, ECV of acute AF is an effective procedure and VR during AF does not affect its efficacy, the maintenance of sinus rhythm or the incidence of bradycardic, thromboembolic or other complications during 30 days follow-up after ECV. Low VR is predominately observed in male patients, while high VR was a feature related to a shorter history of AF and high alcohol-intake.
Resumo:
Today industries and commerce in Ghana are facing enormous energy challenge. The pressure is on for industries to reduce energy consumption, lower carbon emissions and provide se-cured power supply. Industrial electric motor energy efficiency improvement is one of the most important tools to reduce global warming threat and reduce electricity bills. In order to develop a strategic industrial energy efficiency policy, it is therefore necessary to study the barriers that inhibit the implementation of cost – effective energy efficiency measures and the driving forces that promote the implementation. The aim of this thesis is to analyse the energy consumption pattern of electric motors, study factors that promote or inhibit energy efficiency improvements in EMDS and provide cost – effective solutions that improve energy efficiency to bridge the existing energy efficiency gap in the surveyed industries. The results from this thesis has revealed that, the existence of low energy efficiency in motor-driven systems in the surveyed industries were due to poor maintenance practices, absence of standards, power quality issues, lack of access to capital and limited awareness to the im-portance of energy efficiency improvements in EMDS. However, based on the results pre-sented in this thesis, a policy approach towards industrial SMEs should primarily include dis-counted or free energy audit in providing the industries with the necessary information on potential energy efficiency measures, practice best motor management programmes and estab-lish a minimum energy performance standard (MEPS) for motors imported into the country. The thesis has also shown that education and capacity development programmes, financial incentives and system optimization are effective means to promote energy efficiency in elec-tric motor – driven systems in industrial SMEs in Ghana
Resumo:
Electrical road vehicles were common at the begin of the 20th century but internal combustion engines took a victory from electrical motors in road vehicles. The acknowledgement of the environment, and the price and the availability of the crude oil are reasons for the comeback of the electrical vehicles. Advancement in industrial technology and political atmosphere in EU as the directive 20--20--20, which consists of reducing fossil emission, increasing renewable energy and increasing the energy efficiency, have made the electrification popular again. In this thesis tests based on standard ISO 16750--2 electrical loads for electrical equipment in road vehicles are made for Visedo Oy's PowerMASTER M-frame power electronics device. This device is designed for mainly drive trains in mobile work machines and marine vessels but can be used in other application in its power range which also includes road vehicles. The functionality of the device is tested with preliminary tests which act as a framework for the tests based on standards.
Resumo:
The increasing emphasis on energy efficiency is starting to yield results in the reduction in greenhouse gas emissions; however, the effort is still far from sufficient. Therefore, new technical solutions that will enhance the efficiency of power generation systems are required to maintain the sustainable growth rate, without spoiling the environment. A reduction in greenhouse gas emissions is only possible with new low-carbon technologies, which enable high efficiencies. The role of the rotating electrical machine development is significant in the reduction of global emissions. A high proportion of the produced and consumed electrical energy is related to electrical machines. One of the technical solutions that enables high system efficiency on both the energy production and consumption sides is high-speed electrical machines. This type of electrical machines has a high system overall efficiency, a small footprint, and a high power density compared with conventional machines. Therefore, high-speed electrical machines are favoured by the manufacturers producing, for example, microturbines, compressors, gas compression applications, and air blowers. High-speed machine technology is challenging from the design point of view, and a lot of research is in progress both in academia and industry regarding the solution development. The solid technical basis is of importance in order to make an impact in the industry considering the climate change. This work describes the multidisciplinary design principles and material development in high-speed electrical machines. First, high-speed permanent magnet synchronous machines with six slots, two poles, and tooth-coil windings are discussed in this doctoral dissertation. These machines have unique features, which help in solving rotordynamic problems and reducing the manufacturing costs. Second, the materials for the high-speed machines are discussed in this work. The materials are among the key limiting factors in electrical machines, and to overcome this limit, an in-depth analysis of the material properties and behavior is required. Moreover, high-speed machines are sometimes operating in a harsh environment because they need to be as close as possible to the rotating tool and fully exploit their advantages. This sets extra requirements for the materials applied.