57 resultados para Data-driven energy e ciency
Resumo:
Fluid handling systems such as pump and fan systems are found to have a significant potential for energy efficiency improvements. To deliver the energy saving potential, there is a need for easily implementable methods to monitor the system output. This is because information is needed to identify inefficient operation of the fluid handling system and to control the output of the pumping system according to process needs. Model-based pump or fan monitoring methods implemented in variable speed drives have proven to be able to give information on the system output without additional metering; however, the current model-based methods may not be usable or sufficiently accurate in the whole operation range of the fluid handling device. To apply model-based system monitoring in a wider selection of systems and to improve the accuracy of the monitoring, this paper proposes a new method for pump and fan output monitoring with variable-speed drives. The method uses a combination of already known operating point estimation methods. Laboratory measurements are used to verify the benefits and applicability of the improved estimation method, and the new method is compared with five previously introduced model-based estimation methods. According to the laboratory measurements, the new estimation method is the most accurate and reliable of the model-based estimation methods.
Resumo:
The growing population in cities increases the energy demand and affects the environment by increasing carbon emissions. Information and communications technology solutions which enable energy optimization are needed to address this growing energy demand in cities and to reduce carbon emissions. District heating systems optimize the energy production by reusing waste energy with combined heat and power plants. Forecasting the heat load demand in residential buildings assists in optimizing energy production and consumption in a district heating system. However, the presence of a large number of factors such as weather forecast, district heating operational parameters and user behavioural parameters, make heat load forecasting a challenging task. This thesis proposes a probabilistic machine learning model using a Naive Bayes classifier, to forecast the hourly heat load demand for three residential buildings in the city of Skellefteå, Sweden over a period of winter and spring seasons. The district heating data collected from the sensors equipped at the residential buildings in Skellefteå, is utilized to build the Bayesian network to forecast the heat load demand for horizons of 1, 2, 3, 6 and 24 hours. The proposed model is validated by using four cases to study the influence of various parameters on the heat load forecast by carrying out trace driven analysis in Weka and GeNIe. Results show that current heat load consumption and outdoor temperature forecast are the two parameters with most influence on the heat load forecast. The proposed model achieves average accuracies of 81.23 % and 76.74 % for a forecast horizon of 1 hour in the three buildings for winter and spring seasons respectively. The model also achieves an average accuracy of 77.97 % for three buildings across both seasons for the forecast horizon of 1 hour by utilizing only 10 % of the training data. The results indicate that even a simple model like Naive Bayes classifier can forecast the heat load demand by utilizing less training data.
Resumo:
The whole research of the current Master Thesis project is related to Big Data transfer over Parallel Data Link and my main objective is to assist the Saint-Petersburg National Research University ITMO research team to accomplish this project and apply Green IT methods for the data transfer system. The goal of the team is to transfer Big Data by using parallel data links with SDN Openflow approach. My task as a team member was to compare existing data transfer applications in case to verify which results the highest data transfer speed in which occasions and explain the reasons. In the context of this thesis work a comparison between 5 different utilities was done, which including Fast Data Transfer (FDT), BBCP, BBFTP, GridFTP, and FTS3. A number of scripts where developed which consist of creating random binary data to be incompressible to have fair comparison between utilities, execute the Utilities with specified parameters, create log files, results, system parameters, and plot graphs to compare the results. Transferring such an enormous variety of data can take a long time, and hence, the necessity appears to reduce the energy consumption to make them greener. In the context of Green IT approach, our team used Cloud Computing infrastructure called OpenStack. It’s more efficient to allocated specific amount of hardware resources to test different scenarios rather than using the whole resources from our testbed. Testing our implementation with OpenStack infrastructure results that the virtual channel does not consist of any traffic and we can achieve the highest possible throughput. After receiving the final results we are in place to identify which utilities produce faster data transfer in different scenarios with specific TCP parameters and we can use them in real network data links.
Resumo:
This thesis studies energy efficiencies and technical properties of gas driven ground source heat pumps and pump systems. The research focuses on two technologies: gas engine driven compressor heat pump and thermally driven gas absorption heat pump. System consist of a gas driven compressor or absorption ground source heat pump and a gas condensing boiler, which covers peak load. The reference system is a standard electrically powered compressor heat pump with electric heating elements for peak load. The systems are compared through primary energy ratios. Coefficient of performances of different heat pump technologies are also compared. At heat pump level, gas driven heat pumps are having lower coefficient of performances as compared with corresponding electric driven heat pump. However, gas heat pumps are competitive when primary energy ratios, where electricity production losses are counted in, are compared. Technically, gas heat pumps can potentially achieve a slightly higher temperatures with greater total energy efficiency as compared to the electric driven heat pump. The primary energy ratios of gas heat pump systems in relation to EHP-system improves when the share of peak load increases. Electric heat pump system's overall energy efficiency is heavily dependent on the electricity production efficiency. Economy as well as CO2-emissions were not examined in this thesis, which however, would be good topics for further study.
Resumo:
Financial time series have a tendency of abruptly changing their behavior and maintain this behavior for several consecutive periods, and commodity futures returns are not an exception. This quality proposes that nonlinear models, as opposed to linear models, can more accurately describe returns and volatility. Markov regime switching models are able to match this behavior and have become a popular way to model financial time series. This study uses Markov regime switching model to describe the behavior of energy futures returns on a commodity level, because studies show that commodity futures are a heterogeneous asset class. The purpose of this thesis is twofold. First, determine how many regimes characterize individual energy commodities’ returns in different return frequencies. Second, study the characteristics of these regimes. We extent the previous studies on the subject in two ways: We allow for the possibility that the number of regimes may exceed two, as well as conduct the research on individual commodities rather than on commodity indices or subgroups of these indices. We use daily, weekly and monthly time series of Brent crude oil, WTI crude oil, natural gas, heating oil and gasoil futures returns over 1994–2014, where available, to carry out the study. We apply the likelihood ratio test to determine the sufficient number of regimes for each commodity and data frequency. Then the time series are modeled with Markov regime switching model to obtain the return distribution characteristics of each regime, as well as the transition probabilities of moving between regimes. The results for the number of regimes suggest that daily energy futures return series consist of three to six regimes, whereas weekly and monthly returns for all energy commodities display only two regimes. When the number of regimes exceeds two, there is a tendency for the time series of energy commodities to form groups of regimes. These groups are usually quite persistent as a whole because probability of a regime switch inside the group is high. However, individual regimes in these groups are not persistent and the process oscillates between these regimes frequently. Regimes that are not part of any group are generally persistent, but show low ergodic probability, i.e. rarely prevail in the market. This study also suggests that energy futures return series characterized with two regimes do not necessarily display persistent bull and bear regimes. In fact, for the majority of time series, bearish regime is considerably less persistent. Rahoituksen aikasarjoilla on taipumus arvaamattomasti muuttaa käyttäytymistään ja jatkaa tätä uutta käyttäytymistä useiden periodien ajan, eivätkä hyödykefutuurien tuotot tee tähän poikkeusta. Tämän ominaisuuden johdosta lineaaristen mallien sijasta epälineaariset mallit pystyvät tarkemmin kuvailemaan esimerkiksi tuottojen jakauman parametreja. Markov regiiminvaihtomallit pystyvät vangitsemaan tämän ominaisuuden ja siksi niistä on tullut suosittuja rahoituksen aikasarjojen mallintamisessa. Tämä tutkimus käyttää Markov regiiminvaihtomallia kuvaamaan yksittäisten energiafutuurien tuottojen käyttäytymistä, sillä tutkimukset osoittavat hyödykefutuurien olevan hyvin heterogeeninen omaisuusluokka. Tutkimuksen tarkoitus on selvittää, kuinka monta regiimiä tarvitaan kuvaamaan energiafutuurien tuottoja eri tuottofrekvensseillä ja mitkä ovat näiden regiimien ominaisuudet. Aiempaa tutkimusta aiheesta laajennetaan määrittämällä regiimien lukumäärä tilastotieteellisen testauksen menetelmin sekä tutkimalla energiafutuureja yksittäin; ei indeksi- tai alaindeksitasolla. Tutkimuksessa käytetään päivä-, viikko- ja kuukausiaikasarjoja Brent-raakaöljyn, WTI-raakaöljyn, maakaasun, lämmitysöljyn ja polttoöljyn tuotoista aikaväliltä 1994–2014, siltä osin kuin aineistoa on saatavilla. Likelihood ratio -testin avulla estimoidaan kaikille aikasarjoille regiimien määrä,jonka jälkeen Markov regiiminvaihtomallia hyödyntäen määritetään yksittäisten regiimientuottojakaumien ominaisuudet sekä regiimien välinen transitiomatriisi. Tulokset regiimien lukumäärän osalta osoittavat, että energiafutuurien päiväkohtaisten tuottojen aikasarjoissa regiimien lukumäärä vaihtelee kolmen ja kuuden välillä. Viikko- ja kuukausituottojen kohdalla kaikkien energiafutuurien prosesseissa regiimien lukumäärä on kaksi. Kun regiimejä on enemmän kuin kaksi, on prosessilla taipumus muodostaa regiimeistä koostuvia ryhmiä. Prosessi pysyy ryhmän sisällä yleensä pitkään, koska todennäköisyys siirtyä ryhmään kuuluvien regiimien välillä on suuri. Yksittäiset regiimit ryhmän sisällä eivät kuitenkaan ole kovin pysyviä. Näin ollen prosessi vaihtelee ryhmän sisäisten regiimien välillä tiuhaan. Regiimit, jotka eivät kuulu ryhmään, ovat yleensä pysyviä, mutta prosessi ajautuu niihin vain harvoin, sillä todennäköisyys siirtyä muista regiimeistä niihin on pieni. Tutkimuksen tulokset osoittavat myös, että prosesseissa, joita ohjaa kaksi regiimiä, nämä regiimit eivät välttämättä ole pysyvät bull- ja bear-markkinatilanteet. Tulokset osoittavat sen sijaan, että bear-markkinatilanne on energiafutuureissa selvästi vähemmän pysyvä.
Resumo:
This thesis introduces heat demand forecasting models which are generated by using data mining algorithms. The forecast spans one full day and this forecast can be used in regulating heat consumption of buildings. For training the data mining models, two years of heat consumption data from a case building and weather measurement data from Finnish Meteorological Institute are used. The thesis utilizes Microsoft SQL Server Analysis Services data mining tools in generating the data mining models and CRISP-DM process framework to implement the research. Results show that the built models can predict heat demand at best with mean average percentage errors of 3.8% for 24-h profile and 5.9% for full day. A deployment model for integrating the generated data mining models into an existing building energy management system is also discussed.
Resumo:
Many-core systems provide a great potential in application performance with the massively parallel structure. Such systems are currently being integrated into most parts of daily life from high-end server farms to desktop systems, laptops and mobile devices. Yet, these systems are facing increasing challenges such as high temperature causing physical damage, high electrical bills both for servers and individual users, unpleasant noise levels due to active cooling and unrealistic battery drainage in mobile devices; factors caused directly by poor energy efficiency. Power management has traditionally been an area of research providing hardware solutions or runtime power management in the operating system in form of frequency governors. Energy awareness in application software is currently non-existent. This means that applications are not involved in the power management decisions, nor does any interface between the applications and the runtime system to provide such facilities exist. Power management in the operating system is therefore performed purely based on indirect implications of software execution, usually referred to as the workload. It often results in over-allocation of resources, hence power waste. This thesis discusses power management strategies in many-core systems in the form of increasing application software awareness of energy efficiency. The presented approach allows meta-data descriptions in the applications and is manifested in two design recommendations: 1) Energy-aware mapping 2) Energy-aware execution which allow the applications to directly influence the power management decisions. The recommendations eliminate over-allocation of resources and increase the energy efficiency of the computing system. Both recommendations are fully supported in a provided interface in combination with a novel power management runtime system called Bricktop. The work presented in this thesis allows both new- and legacy software to execute with the most energy efficient mapping on a many-core CPU and with the most energy efficient performance level. A set of case study examples demonstrate realworld energy savings in a wide range of applications without performance degradation.
Resumo:
Liberalization of electricity markets has resulted in a competed Nordic electricity market, in which electricity retailers play a key role as electricity suppliers, market intermediaries, and service providers. Although these roles may remain unchanged in the near future, the retailers’ operation may change fundamentally as a result of the emerging smart grid environment. Especially the increasing amount of distributed energy resources (DER), and improving opportunities for their control, are reshaping the operating environment of the retailers. This requires that the retailers’ operation models are developed to match the operating environment, in which the active use of DER plays a major role. Electricity retailers have a clientele, and they operate actively in the electricity markets, which makes them a natural market party to offer new services for end-users aiming at an efficient and market-based use of DER. From the retailer’s point of view, the active use of DER can provide means to adapt the operation to meet the challenges posed by the smart grid environment, and to pursue the ultimate objective of the retailer, which is to maximize the profit of operation. This doctoral dissertation introduces a methodology for the comprehensive use of DER in an electricity retailer’s short-term profit optimization that covers operation in a variety of marketplaces including day-ahead, intra-day, and reserve markets. The analysis results provide data of the key profit-making opportunities and the risks associated with different types of DER use. Therefore, the methodology may serve as an efficient tool for an experienced operator in the planning of the optimal market-based DER use. The key contributions of this doctoral dissertation lie in the analysis and development of the model that allows the retailer to benefit from profit-making opportunities brought by the use of DER in different marketplaces, but also to manage the major risks involved in the active use of DER. In addition, the dissertation introduces an analysis of the economic potential of DER control actions in different marketplaces including the day-ahead Elspot market, balancing power market, and the hourly market of Frequency Containment Reserve for Disturbances (FCR-D).
Resumo:
The awareness and concern of our environment together with legislation have set more and more tightening demands for energy efficiency of non-road mobile machinery (NRMM). Integrated electro-hydraulic energy converter (IEHEC) has been developed in Lappeenranta University of Technology (LUT). The elimination of resistance flow, and the recuperation of energy makes it very efficient alternative. The difficulties of IEHEC machine to step to the market has been the requirement of one IEHEC machine per one actuator. The idea is to switch IEHEC between two actuators of log crane using fast on/off valves. The control system architecture is introduced. The system has been simulated in co-simulation using two different software. The simulated responses of pump-controlled system is compared to the responses of the conventional valve-controlled system.
Resumo:
The purpose of this study is to find out how laser based Directed Energy Deposition processes can benefit from different types of monitoring. DED is a type of additive manufacturing process, where parts are manufactured in layers by using metallic powder or metallic wire. DED processes can be used to manufacture parts that are not possible to manufacture with conventional manufacturing processes, when adding new geometries to existing parts or when wanting to minimize the scrap material that would result from machining the part. The aim of this study is to find out why laser based DED-processes are monitored, how they are monitored and what devices are used for monitoring. This study has been done in the form of a literature review. During the manufacturing process, the DED-process is highly sensitive to different disturbances such as fluctuations in laser absorption, powder feed rate, temperature, humidity or the reflectivity of the melt pool. These fluctuations can cause fluctuations in the size of the melt pool or its temperature. The variations in the size of the melt pool have an effect on the thickness of individual layers, which have a direct impact on the final surface quality and dimensional accuracy of the parts. By collecting data from these fluctuations and adjusting the laser power in real-time, the size of the melt pool and its temperature can be kept within a specified range that leads to significant improvements in the manufacturing quality. The main areas of monitoring can be divided into the monitoring of the powder feed rate, the temperature of the melt pool, the height of the melt pool and the geometry of the melt pool. Monitoring the powder feed rate is important when depositing different material compositions. Monitoring the temperature of the melt pool can give information about the microstructure and mechanical properties of the part. Monitoring the height and the geometry of the melt pool is an important factor in achieving the desired dimensional accuracy of the part. By combining multiple different monitoring devices, the amount of fluctuations that can be controlled will be increased. In addition, by combining additive manufacturing with machining, the benefits of both processes could be utilized.
Resumo:
Today industries and commerce in Ghana are facing enormous energy challenge. The pressure is on for industries to reduce energy consumption, lower carbon emissions and provide se-cured power supply. Industrial electric motor energy efficiency improvement is one of the most important tools to reduce global warming threat and reduce electricity bills. In order to develop a strategic industrial energy efficiency policy, it is therefore necessary to study the barriers that inhibit the implementation of cost – effective energy efficiency measures and the driving forces that promote the implementation. The aim of this thesis is to analyse the energy consumption pattern of electric motors, study factors that promote or inhibit energy efficiency improvements in EMDS and provide cost – effective solutions that improve energy efficiency to bridge the existing energy efficiency gap in the surveyed industries. The results from this thesis has revealed that, the existence of low energy efficiency in motor-driven systems in the surveyed industries were due to poor maintenance practices, absence of standards, power quality issues, lack of access to capital and limited awareness to the im-portance of energy efficiency improvements in EMDS. However, based on the results pre-sented in this thesis, a policy approach towards industrial SMEs should primarily include dis-counted or free energy audit in providing the industries with the necessary information on potential energy efficiency measures, practice best motor management programmes and estab-lish a minimum energy performance standard (MEPS) for motors imported into the country. The thesis has also shown that education and capacity development programmes, financial incentives and system optimization are effective means to promote energy efficiency in elec-tric motor – driven systems in industrial SMEs in Ghana
Resumo:
Transmission system operators and distribution system operators are experiencing new challenges in terms of reliability, power quality, and cost efficiency. Although the potential of energy storages to face those challenges is recognized, the economic implications are still obscure, which introduce the risk into the business models. This thesis aims to investigate the technical and economic value indicators of lithium-ion battery energy storage systems (BESS) in grid-scale applications. In order to do that, a comprehensive performance lithium-ion BESS model with degradation effects estimation is developed. The model development process implies literature review on lifetime modelling, use, and modification of previous study progress, building the additional system parts and integrating it into a complete tool. The constructed model is capable of describing the dynamic behavior of the BESS voltage, state of charge, temperature and capacity loss. Five control strategies for BESS unit providing primary frequency regulation are implemented, in addition to the model. The questions related to BESS dimensioning and the end of life (EoL) criterion are addressed. Simulations are performed with one-month real frequency data acquired from Fingrid. The lifetime and cost-benefit analysis of the simulation results allow to compare and determine the preferable control strategy. Finally, the study performs the sensitivity analysis of economic profitability with variable size, EoL and system price. The research reports that BESS can be profitable in certain cases and presents the recommendations.