52 resultados para Cutting force
Resumo:
Press forming is nowadays one of the most common industrial methods in use for producing deeper trays from paperboard. Demands for material properties like recyclability and sustainability have increased also in the packaging industry, but there are still limitations related to the formability of paperboard. A majority of recent studies have focused on material development, but the potential of the package manufacturing process can also be improved by the development of tooling and process control. In this study, advanced converting tools (die cutting tools and the press forming mould) are created for production scale paperboard tray manufacturing. Also monitoring methods that enable the production of paperboard trays with enhanced quality, and can be utilized in process control are developed. The principles for tray blank preparation, including creasing pattern and die cutting tool design are introduced. The mould heating arrangement and determination of mould clearance are investigated to improve the quality of the press formed trays. The effect of the spring back of the tray walls on the tray dimensions can be managed by adjusting the heat-related process parameters and estimating it at the mould design stage. This enables production speed optimization as the process parameters can be adjusted more freely. Real-time monitoring of pressing force by using multiple force sensors embedded in the mould structure can be utilized in the evaluation of material characteristics on a modified production machinery. Comprehensive process control can be achieved with a combination of measurement of the outer dimensions of the trays and pressing force monitoring. The control method enables detection of defects and tracking changes in the material properties. The optimized converting tools provide a basis for effective operation of the control system.
Resumo:
Additive manufacturing (shortened as AM), or more commonly 3D printing, consists of wide variety of different modern manufacturing technologies. AM is based on direct printing of a digital 3D model to a final product which is fabricated adding material layer by layer. This is from where term additive manufacturing has its origin. It is not only material what is added, but it is also value, properties etc. which are added. AM enables production of different and even better products compared to conventional manufacturing technologies. An estimation of potential of additive manufacturing can be gathered by considering the potential of laser cutting, which is one of the most widely used modern manufacturing technologies. This technique has been used over 40 years, and whole market around this technology is at the moment c. four billion euros and yearly growth is around 10 %. One factor affecting this success of laser cutting is that laser cutting enables radical improvements to products made of flat sheet. AM and 3D printing will do the same for three dimensional parts. Laser devices, which are at the moment used in 3D printing, are globally at the moment only around 1% of all laser devices used in any fabrication technology, so even with a cautious estimate the potential growth of at least 100 % is coming in next few years. Role of education is very important, when this kind of modern technology is industrially implemented. When both generation entering to work life and also generation who has been a while in work life understands new technology, its potential and limitations, this is the point when also product design can be rethought Potential of product design is driving force for wide use of additive manufacturing and 3D printing. Utilization of additive manufacturing and 3D printing is also opportunity for Finland and Finnish industry. This technology can save Finnish manufacturing industry. This technique has stron potential, as Finland has traditionally strong industrial know-how and good ICT knowledge.
Resumo:
ZrO2 nanocomposites were investigated considering their perspective application in hygroelectric power elements. Scanning probe microscopy (SPM) techniques allowed to visualize the surface topography and electrical properties. In this work was compared spacial charge behaviour of sample in humid and dry air conditions. Also different SPM modes were compared. Kelvin probe force microscopy (KPFM) was applied to characterize the spacial charge distribution on surface of the sample. Measurements showed, that trapped charge is not dissipated and can be manipulated with low voltages. Humidity influence on the electric potential of the sample was shown.