61 resultados para Chemical leaching
Resumo:
The study evaluates the potential application of chemical substances, obtained from biogas plants` by-products. Through the anaerobic digestion process with biogas the large amount of digestate is produced. This digestate mainly consists on the organic matter with the high concentration of nutrients such as nitrogen and phosphorus. During ammonia stripping and phosphorus precipitation the products- ammonia water, ammonium sulfate, ammonium nitrate, ferrous phosphate, aluminum phosphate, calcium phosphate and struvite can be recovered. These chemicals have potential application in different industrial sectors. According to Finnish market and chemicals properties, the most perspective industrial applications were determined. Based on the data, obtained through the literature review and market study, the ammonia water was recognized as a most perspective recovered substances. According to interview provided among Finnish companies, ammonia water is used for flue gas treatment in SNCR technology. This application has a large scale in the framework of Finnish industrial sectors. As well nitrogen with phosphorous can be used as a source of nutrients in the biological wastewater treatment plants of paper mills.
Resumo:
Surface chemistry is of great importance in plant biomass engineering and applications. The surface chemical composition of biomass which includes lignin, carbohydrates and extractives influences its interactions with chemical agents, such as pulp processing/papermaking chemicals, or enzymes for different purposes. In this thesis, the changes in the surface chemical composition of lignocellulosic biomass after physical modification for the improvement of resulting paper properties and chemical treatment for the enhancement of enzymatic hydrolysis were investigated. Low consistency (LC) refining was used as physical treatment of bleached softwood and hardwood pulp samples, and the surface chemistry of refined samples was investigated. The refined pulp was analysed as whole pulp while the fines-free fibre samples were characterized separately. The fines produced in LCrefining contributed to an enlarged surface specific area as well as the change of surface coverage by lignin and extractives, as investigated by X-ray photoelectron spectroscopy (XPS). The surface coverage by lignin of the whole pulp decreased after refining while the surface coverage by extractives increased both for pine and eucalyptus. In the case of pine, the removal of fines resulted in reduction of the surface coverage by extractives, while the surface coverage by lignin increased on fibre sample (without fines). In the case of eucalyptus, the surface coverage by lignin of fibre samples decreased after the removal of fines. In addition, the surface distribution of carbohydrates, lignin and extractives of pine and eucalyptus samples was determined by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). LC-refining increased the amounts of pentose, hexose and extractives on the surface of pine samples. ToF-SIMS also gave clear evidence about xylan deposition and reduction of surface lignin distribution on the fibre of eucalyptus. However, the changes in the surface chemical composition during the physical treatment has led to an increase in the adsorption of fluorescent whitening agents (FWAs) on fibres due to a combination of electro-static forces, specific surface area of fibres and hydrophobic interactions. Various physicochemical pretreatments were conducted on wood and non-wood biomass for enhancing enzymatic hydrolysis of polysaccharides, and the surface chemistry of the pretreated and enzymatically hydrolysed samples was investigated by field emission scanning electron microscopy (FE-SEM), XPS and ToF-SIMS. A hydrotrope was used as a relatively novel pretreatment technology both in the case of wood and non-wood biomass. For comparison, ionic liquid and hydrothermal pretreatments were applied on softwood and hardwood as well. Thus, XPS analysis showed that the surface lignin was more efficiently removed by hydrotropic pretreatment compared to ionic liquid or hydrothermal pretreatments. SEM analysis also found that already at room temperature the ionic liquid pretreatments were more effective in swelling the fibres compared with hydrotropic pretreatment at elevated temperatures. The enzymatic hydrolysis yield of hardwood was enhanced due to the decrease in surface coverage of lignin, which was induced by hydrotropic treatment. However, hydrotropic pretreatment was not appropriate for softwood because of the predominance of guaiacyl lignin structure in this material. In addition, the reduction of surface lignin and xylan during pretreatment and subsequent increase in cellulose hydrolysis by enzyme could be observed from ToF-SIMS results. The characterisation of the non-wood biomass (e.g. sugarcane bagasse and common reed) treated by hydrotropic method, alkaline and alkaline hydrogen peroxide pretreatments were carried out by XPS and ToF-SIMS. According to the results, the action for the removal of the surface lignin of non-wood biomass by hydrotropic pretreatment was more significant compared to alkaline and alkaline hydrogen peroxide pretreatments, although a higher total amount of lignin could be removed by alkaline and alkaline hydrogen peroxide pretreatment. Furthermore, xylan could be remarkably more efficiently removed by hydrotropic method. Therefore, the glucan yield achieved from hydrotropic treated sample was higher than that from samples treated with alkaline or alkaline hydrogen peroxide. Through the use of ToF-SIMS, the distribution and localization of lignin and carbohydrates on the surface of ignocelluloses during pretreatment and enzymatic hydrolysis could be detected, and xylan degradation during enzymatic hydrolysis could also be assessed. Thus, based on the results from XPS and ToF-SIMS, the mechanism of the hydrotropic pretreatment in improving the accessibility of enzymes to fibre and further ameliorating of the enzymatic saccharification could be better elucidated.
Resumo:
Förståelse av olika ytors vätningsegenskaper är viktig i många pappers-relaterade industriella processer eftersom vätningen påverkar materialbeteendet, t.ex. vid bestrykning, tryckning och laminering. Förmågan att kontrollera vätningen är av intresse, därför att den ger nya möjligheter till modifikation av ytor. Vätningen styrs av ytans struktur och kemi. Kunskap om dessa egenskaper krävs både i fundamentala studier och för industriella applikationer. Nanopartiklar används ofta för att skapa funktionella ytor med mångsidiga egenskaper. Detta arbete strävar till att förstå de fysikalisk-kemiska egenskaperna hos papper och kartong som är bestrukna med nanopartiklar, för att sedan kunna förklara de observerade förändringarna i ytornas vätningsförmåga. Funktionella ytor med justerbar vätningsförmåga tillverkades genom att deponera nanopartiklar i en rulle-till-rulle vätskeflammasprutningprocess (LFS). TiO2 -nanopartikelbeläggningen skapar en superhydrofob yta som har över 160° kontaktvinkelmed vatten, medan SiO2-nanopartikelbeläggningar skapar mycket hydrofila ytor med kontaktvinklar så låga som 21° med vatten. Superhydrofobiciteten eller hydrofiliteten är ett resultat av den kombinerade effekten hos ytstrukturen och ytkemin, såsom nanopartiklarnas oxidationsnivå eller karbonatiseringsnivå. Kartongytor som är bestrukna med TiO2-nanopartiklar kan vara såväl superhydrofoba som hydrofila. Hydrofilitet kan induceras genom UVA-strålning, medan behandling i hög temperatur i ugn resulterar i en superhydrofob yta. Ett mål med arbetet var att förstå mekanismerna hos de kemiska för ändringar som sker under UVA-bestrålning och värmebehandling av ytor, bestrukna med TiO2-nanopartiklar. Ytornas abrasions- och kompressionsmotstånd samt relaterade förändringar i funktionella egenskaper undersöktes. Resultaten skapar en bättre förståelse för potentiell användning av LFS-nanopartikelbeläggningar i pappersrelaterade applikationer. En förståelse för stabiliteten hos nanopartikelbeläggningarna när de exponeras för externa krafter är viktig för att försäkra deras funktionalitet i industriella applikationer och för att garantera beläggningarnas miljö-, hälso- och säkerhetsaspekter. ------------------------------------------ Pinnan kastumisominaisuuksien hallinta on tärkeää monissa paperiteollisuuden prosesseissa, sillä pinnan kastuminen vaikuttaa esimerkiksi päällystämiseen, painamiseen ja laminointiin. Pinnan kastuvuuden säätäminen avaa mielenkiintoisia uusia mahdollisuuksia pintojen ominaisuuksien hallintaan. Pinnan kastuvuus määräytyy pinnan rakenteesta ja kemiasta, ja näiden ominaisuuksien ymmärtäminen on tärkeää sekä perustutkimuksessa että teollisissa sovelluksissa. Nanopartikkeleita käytetään usein toiminnallisten ja hallitusti kastuvien pintojen aikaansaamiseksi. Tässä työssä on tarkasteltu nanopartikkelipinnoitetun paperin ja kartongin fysikaalis-kemiallisia pintaominaisuuksia, jotka selittävät havaittuja muutoksia pinnan kastuvuudessa. Toiminnalliset pinnat säädettävillä kastuvuusominaisuuksilla valmistettiin nesteliekkiruiskutus (LFS) nanopartikkelipinnoituksella rullalta rullalle-menetelmällä. TiO2-nanopartikkelipäällystys saa aikaan superhydrofobisen pinnan, jonka veden kontaktikulma on suurempi kuin 160°. Toisaalta SiO2-nanopartikkelipäällystys muuttaa pinnan hyvin hydrofiiliseksi, veden kontaktikulman ollessa vain 21°. Pinnan superhydrofobisuus tai hydrofiilisyys riippuu nanopartikkelipinnan rakenteesta ja pintakemiasta kuten pinnan hapettumisasteesta ja hiilipitoisuudesta. TiO2-nanopartikkelipinnoitetun kartonkipinnan kastumista voidaan säätää superhydrofobisen ja hydrofiilisen välillä. Pinnan hydrofiilisyys saadaan aikaan UVA-valolla, kun taas superhydrofobinen pinta voidaan palauttaa korkeassa lämpötilassa uunissa. Tämän työn tavoitteena oli selvittää, millaisia muutoksia TiO2-nanopartikkelipäällystetyn pinnan kemiassa tapahtuu UVA-valon ja lämpökäsittelyn vaikutuksesta. Työssä tarkasteltiin myös pinnan mekaanisen hankauksen ja kokoonpuristuksen vaikutusta toiminnallisiin ominaisuuksiin. Työssä saavutetut tulokset auttavat ymmärtämään LFS-nanopartikkelipäällystettyjen pintojen soveltuvuutta paperiin liittyvissä sovelluksissa. Nanopartikkelipäällystettyjen pintojen stabiilius ulkoisten voimien alaisena on tärkeää toiminnallisten päällystysten ympäristö-, terveys- ja turvallisuusnäkökulmia tarkasteltaessa.
Resumo:
Depletion of high grade mineral resources, tightening of environmental regulations and the environmental impact of acid mine drainage caused by sulfidic minerals continuously increase the interest in processing tailings and other mine waste. Treating waste requires additional capital and operational input, but the decrease in size and need of tailings ponds and permits decrease the overall costs. Treatment and utilization of the tailings could also bring added revenue by the recovery of valuables. Leaching of metal sulfides is very demanding and time consuming and hence process conditions need to be carefully optimized. The leaching of sulfides is affected by for example the choice of leaching agent, its concentration and temperature, pH, the redox potential, pressure, pulp density and particle size distribution. With reference to the mine case study the leaching of nickel and copper sulfides, especially the primary minerals pentlandite and chalcopyrite were investigated. Leaching behavior and recoveries for nickel, copper and iron were found out by sulfuric and citric acid leaching experiments using tailings samples of high and low sulfur content. Moderate recoveries were obtained and citric acid seemed more attractive. Increase in temperature and decrease in pulp density had positive effect on the recovery and pH was also proven to have a significant effect on the recovery of valuables. The rate determining step was determined through kinetic modeling in case of all valuables separately. Leaching was controlled by diffusion. The investigated multimetal tailing showed moderate potential in recovering of metal valuables from low grade tailing deposits. The process conditions should however be further optimized.
Resumo:
The steel industry produces, besides steel, also solid mineral by-products or slags, while it emits large quantities of carbon dioxide (CO2). Slags consist of various silicates and oxides which are formed in chemical reactions between the iron ore and the fluxing agents during the high temperature processing at the steel plant. Currently, these materials are recycled in the ironmaking processes, used as aggregates in construction, or landfilled as waste. The utilization rate of the steel slags can be increased by selectively extracting components from the mineral matrix. As an example, aqueous solutions of ammonium salts such as ammonium acetate, chloride and nitrate extract calcium quite selectively already at ambient temperature and pressure conditions. After the residual solids have been separated from the solution, calcium carbonate can be precipitated by feeding a CO2 flow through the solution. Precipitated calcium carbonate (PCC) is used in different applications as a filler material. Its largest consumer is the papermaking industry, which utilizes PCC because it enhances the optical properties of paper at a relatively low cost. Traditionally, PCC is manufactured from limestone, which is first calcined to calcium oxide, then slaked with water to calcium hydroxide and finally carbonated to PCC. This process emits large amounts of CO2, mainly because of the energy-intensive calcination step. This thesis presents research work on the scale-up of the above-mentioned ammonium salt based calcium extraction and carbonation method, named Slag2PCC. Extending the scope of the earlier studies, it is now shown that the parameters which mainly affect the calcium utilization efficiency are the solid-to-liquid ratio of steel slag and the ammonium salt solvent solution during extraction, the mean diameter of the slag particles, and the slag composition, especially the fractions of total calcium, silicon, vanadium and iron as well as the fraction of free calcium oxide. Regarding extraction kinetics, slag particle size, solid-to-liquid ratio and molar concentration of the solvent solution have the largest effect on the reaction rate. Solvent solution concentrations above 1 mol/L NH4Cl cause leaching of other elements besides calcium. Some of these such as iron and manganese result in solution coloring, which can be disadvantageous for the quality of the PCC product. Based on chemical composition analysis of the produced PCC samples, however, the product quality is mainly similar as in commercial products. Increasing the novelty of the work, other important parameters related to assessment of the PCC quality, such as particle size distribution and crystal morphology are studied as well. As in traditional PCC precipitation process, the ratio of calcium and carbonate ions controls the particle shape; a higher value for [Ca2+]/[CO32-] prefers precipitation of calcite polymorph, while vaterite forms when carbon species are present in excess. The third main polymorph, aragonite, is only formed at elevated temperatures, above 40-50 °C. In general, longer precipitation times cause transformation of vaterite to calcite or aragonite, but also result in particle agglomeration. The chemical equilibrium of ammonium and calcium ions and dissolved ammonia controlling the solution pH affects the particle sizes, too. Initial pH of 12-13 during the carbonation favors nonagglomerated particles with a diameter of 1 μm and smaller, while pH values of 9-10 generate more agglomerates of 10-20 μm. As a part of the research work, these findings are implemented in demonstrationscale experimental process setups. For the first time, the Slag2PCC technology is tested in scale of ~70 liters instead of laboratory scale only. Additionally, design of a setup of several hundreds of liters is discussed. For these purposes various process units such as inclined settlers and filters for solids separation, pumps and stirrers for material transfer and mixing as well as gas feeding equipment are dimensioned and developed. Overall emissions reduction of the current industrial processes and good product quality as the main targets, based on the performed partial life cycle assessment (LCA), it is most beneficial to utilize low concentration ammonium salt solutions for the Slag2PCC process. In this manner the post-treatment of the products does not require extensive use of washing and drying equipment, otherwise increasing the CO2 emissions of the process. The low solvent concentration Slag2PCC process causes negative CO2 emissions; thus, it can be seen as a carbon capture and utilization (CCU) method, which actually reduces the anthropogenic CO2 emissions compared to the alternative of not using the technology. Even if the amount of steel slag is too small for any substantial mitigation of global warming, the process can have both financial and environmental significance for individual steel manufacturers as a means to reduce the amounts of emitted CO2 and landfilled steel slag. Alternatively, it is possible to introduce the carbon dioxide directly into the mixture of steel slag and ammonium salt solution. The process would generate a 60-75% pure calcium carbonate mixture, the remaining 25-40% consisting of the residual steel slag. This calcium-rich material could be re-used in ironmaking as a fluxing agent instead of natural limestone. Even though this process option would require less process equipment compared to the Slag2PCC process, it still needs further studies regarding the practical usefulness of the products. Nevertheless, compared to several other CO2 emission reduction methods studied around the world, the within this thesis developed and studied processes have the advantage of existing markets for the produced materials, thus giving also a financial incentive for applying the technology in practice.
Resumo:
With the increasing concern of the sustainable approach of gold mining, thiosulphate has been researched as an alternative lixiviant to cyanide since cyanide is toxic to the environment. In order to investigate the possibility of thiosulphate leaching application in the coming future, life cycle assessment, is conducted to compare the environmental footprint of cyanidation and thiosulphate leaching. The result showed the most significant environmental impact of cyanidation is toxicity to human, while the ammonia of thiosulphate leaching is also a major concern of acidification. In addition, an ecosystem evaluation is also performed to indicate the potential damages caused by an example of cyanide spill at Kittilä mine, resulting in significant environmental risk cost that has to be taken into account for decision making. From the opinion collected from an online LinkedIn discussion forum, the anxiety of sustainability alone would not be enough to contribute a significant change of conventional cyanidation, until the tighten policy of cyanide use. International Cyanide Code, therefore, is crucial for safe gold production. Nevertheless, it is still thoughtful to consider the values of healthy ecosystem and the gold for long-term benefit.
Resumo:
In the framework of the biorefinery concept researchers aspire to optimize the utilization of plant materials, such as agricultural wastes and wood. For most of the known processes, the first steps in the valorisation of biomass are the extraction and purification of the individual components. The obtained raw products by means of a controlled separation can consecutively be modified to result in biofuels or biogas for energy production, but also in value-added products such as additives and important building blocks for the chemical and material industries. Considerable efforts are undertaken in order to substitute the use of oil-based starting materials or at least minimize their processing for the production of everyday goods. Wood is one of the raw materials, which have gained large attention in the last decades and its composition has been studied in detail. Nowadays, the extraction of water-soluble hemicelluloses from wood is well known and so for example xylan can be obtained from hardwoods and O-acetyl galactoglucomannans (GGMs) from softwoods. The aim of this work was to develop water-soluble amphiphilic materials of GGM and to assess their potential use as additives. Furthermore, GGM was also applied as a crosslinker in the synthesis of functional hydrogels for the removal of toxic metals and metalloid ions from aqueous solutions. The distinguished products were obtained by several chemical approaches and analysed by nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR), size exclusion chromatography (SEC), thermal gravimetric analysis (TGA), scanning electron microscope SEM, among others. Bio-based surfactants were produced by applying GGM and different fatty acids as starting materials. On one hand, GGM-grafted-fatty acids were prepared by esterification and on the other hand, well-defined GGM-block-fatty acid derivatives were obtained by linking amino-functional fatty acids to the reducing end of GGM. The reaction conditions for the syntheses were optimized and the resultant amphiphilic GGM derivatives were evaluated concerning their ability to reduce the surface tension of water as surfactants. Furthermore, the block-structured derivatives were tested in respect to their applicability as additives for the surface modification of cellulosic materials. Besides the GGM surfactants with a bio-based hydrophilic and a bio-based hydrophobic part, also GGM block-structured derivatives with a synthetic hydrophobic tail, consisting of a polydimethylsiloxane chain, were prepared and assessed for the hydrophobization of surface of nanofibrillated cellulose films. In order to generate GGM block-structured derivatives containing a synthetic tail with distinguished physical and chemical properties, as well as a tailored chain length, a controlled polymerization method was used. Therefore, firstly an initiator group was introduced at the reducing end of the GGM and consecutively single electron transfer-living radical polymerization (SET-LRP) was performed by applying three different monomers in individual reactions. For the accomplishment of the synthesis and the analysis of the products, challenges related to the solubility of the reactants had to be overcome. Overall, a synthesis route for the production of GGM block-copolymers bearing different synthetic polymer chains was developed and several derivatives were obtained. Moreover, GGM with different molar masses were, after modification, used as a crosslinker in the synthesis of functional hydrogels. Hereby, a cationic monomer was used during the free radical polymerization and the resultant hydrogels were successfully tested for the removal of chromium and arsenic ions from aqueous solutions. The hydrogel synthesis was tailored and materials with distinguished physical properties, such as the swelling rate, were obtained after purification. The results generated in this work underline the potential of bio-based products and the urge to continue carrying out research in order to be able to use more green chemicals for the manufacturing of biorenewable and biodegradable daily products.
Resumo:
This doctoral dissertation presents studies of the formation and evolution of galaxies, through observations and simulations of galactic halos. The halo is the component of galaxies which hosts some of the oldest objects we know of in the cosmos; it is where clues to the history of galaxies are found, for example, by how the chemical structure is related to the dynamics of objects in the halo. The dynamical and chemical structure of halos, both in the Milky Way’s own halo, and in two elliptical galaxies, is the underlying theme in the research. I focus on the density falloff and chemistry of the two external halos, and on the dynamics, density falloff, and chemistry of the Milky Way halo. I first study galactic halos via computer simulations, to test the long- term stability of an anomalous feature recently found in kinematics of the Milky Way’s metal-poor stellar halo. I find that the feature is transient, making its origin unclear. I use a second set of simulations to test if an initially strong relation between the dynamics and chemistry of halo glob-ular clusters in a Milky Way-type galaxy is affected by a merging satellite galaxy, and find that the relation remains strong despite a merger in which the satellite is a third of the mass of the host galaxy. From simulations, I move to observing halos in nearby galaxies, a challenging procedure as most of the light from galaxies comes from the disk and bulge components as opposed to the halo. I use Hubble Space Tele scope observations of the halo of the galaxy M87 and, comparing to similar observations of NGC 5128, find that the chemical structure of the inner halo is similar for both of these giant elliptical galaxies. I use Very Large Telescope observations of the outer halo of NGC 5128 (Centaurus A) and, because of the difficultly in resolving dim extragalac- tic stellar halo populations, I introduce a new technique to subtract the contaminating background galaxies. A transition from a metal-rich stellar halo to a metal-poor has previously been discovered in two different types of galaxies, the disk galaxy M31 and the classic elliptical NGC 3379. Unexpectedly, I discover in this third type of galaxy, the merger remnant NGC 5128, that the density of metal-rich and metal-poor halo stars falls at the same rate within the galactocentric radii of 8 − 65 kpc, the limit of our observations. This thesis presents new results which open opportunities for future investigations.
Resumo:
Graphene is a material with extraordinary properties. Its mechanical and electrical properties are unparalleled but the difficulties in its production are hindering its breakthrough in on applications. Graphene is a two-dimensional material made entirely of carbon atoms and it is only a single atom thick. In this work, properties of graphene and graphene based materials are described, together with their common preparation techniques and related challenges. This Thesis concentrates on the topdown techniques, in which natural graphite is used as a precursor for the graphene production. Graphite consists of graphene sheets, which are stacked together tightly. In the top-down techniques various physical or chemical routes are used to overcome the forces keeping the graphene sheets together, and many of them are described in the Thesis. The most common chemical method is the oxidisation of graphite with strong oxidants, which creates a water-soluble graphene oxide. The properties of graphene oxide differ significantly from pristine graphene and, therefore, graphene oxide is often reduced to form materials collectively known as reduced graphene oxide. In the experimental part, the main focus is on the chemical and electrochemical reduction of graphene oxide. A novel chemical route using vanadium is introduced and compared to other common chemical graphene oxide reduction methods. A strong emphasis is placed on electrochemical reduction of graphene oxide in various solvents. Raman and infrared spectroscopy are both used in in situ spectroelectrochemistry to closely monitor the spectral changes during the reduction process. These in situ techniques allow the precise control over the reduction process and even small changes in the material can be detected. Graphene and few layer graphene were also prepared using a physical force to separate these materials from graphite. Special adsorbate molecules in aqueous solutions, together with sonic treatment, produce stable dispersions of graphene and few layer graphene sheets in water. This mechanical exfoliation method damages the graphene sheets considerable less than the chemical methods, although it suffers from a lower yield.
Resumo:
Effective control and limiting of carbon dioxide (CO₂) emissions in energy production are major challenges of science today. Current research activities include the development of new low-cost carbon capture technologies, and among the proposed concepts, chemical combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) have attracted significant attention allowing intrinsic separation of pure CO₂ from a hydrocarbon fuel combustion process with a comparatively small energy penalty. Both CLC and CLOU utilize the well-established fluidized bed technology, but several technical challenges need to be overcome in order to commercialize the processes. Therefore, development of proper modelling and simulation tools is essential for the design, optimization, and scale-up of chemical looping-based combustion systems. The main objective of this work was to analyze the technological feasibility of CLC and CLOU processes at different scales using a computational modelling approach. A onedimensional fluidized bed model frame was constructed and applied for simulations of CLC and CLOU systems consisting of interconnected fluidized bed reactors. The model is based on the conservation of mass and energy, and semi-empirical correlations are used to describe the hydrodynamics, chemical reactions, and transfer of heat in the reactors. Another objective was to evaluate the viability of chemical looping-based energy production, and a flow sheet model representing a CLC-integrated steam power plant was developed. The 1D model frame was succesfully validated based on the operation of a 150 kWth laboratory-sized CLC unit fed by methane. By following certain scale-up criteria, a conceptual design for a CLC reactor system at a pre-commercial scale of 100 MWth was created, after which the validated model was used to predict the performance of the system. As a result, further understanding of the parameters affecting the operation of a large-scale CLC process was acquired, which will be useful for the practical design work in the future. The integration of the reactor system and steam turbine cycle for power production was studied resulting in a suggested plant layout including a CLC boiler system, a simple heat recovery setup, and an integrated steam cycle with a three pressure level steam turbine. Possible operational regions of a CLOU reactor system fed by bituminous coal were determined via mass, energy, and exergy balance analysis. Finally, the 1D fluidized bed model was modified suitable for CLOU, and the performance of a hypothetical 500 MWth CLOU fuel reactor was evaluated by extensive case simulations.
Resumo:
Mineraalien rikastamiseen käytetään useita fysikaalisia ja kemiallisia menetelmiä. Prosessi sisältää malmin hienonnuksen, rikastuksen ja lopuksi vedenpoistamisen rikastelietteestä. Malmin rikastamiseen käytetään muun muassa vaahdotusta, liuotusta, magneettista rikastusta ja tiheyseroihin perustuvia rikastusmenetelmiä. Rikastuslietteestä voidaan poistaa vettä sakeuttamalla ja suodattamalla. Rikastusprosessin ympäristövaikutuksia voidaan arvioida laskemalla tuotteen vesijalanjälki, joka kertoo valmistamiseen kulutetun veden määrän. Tässä kirjallisuustyössä esiteltiin mineraalien käsittelymenetelmiä sekä prosessijätevesien puhdistusmenetelmiä. Kirjallisuuslähteiden pohjalta selvitettiin Pyhäsalmen kaivoksella valmistetun kuparianodin vesijalanjälki sekä esitettiin menetelmiä, joilla prosessiin tarvittavan raakaveden kulutusta voitaisiin vähentää. Pyhäsalmella kuparirikasteesta valmistetun kuparianodin vesijalanjälki on 240 litraa H2O ekvivalenttia tuotettua tonnia kohden. Pyhäsalmen prosessin raakaveden kulutusta voidaan vähentää lisäämällä sisäistä vedenkierrätystä. Kalsiumsulfaatin saostuminen putkiin ja pumppuihin on ilmentynyt ongelmaksi vedenkierrätyksen lisäämisessä. Kalsiumsulfaattia voidaan erottaa vedestä membraaneihin, ioninvaihtoon ja sähkökemiaan perustuvilla tekniikoilla. Vaihtoehdossa, jossa johdetaan kaikista kolmesta vaahdotuksesta saatavat rikastuslietteen ja rikastushiekan sakeutuksien ylitteet sekä suodatuksien suodosvedet samaan vedenkäsittelyyn voidaan kattaa arviolta noin 65 % koko veden tarpeesta. Raakavettä säästetään vuodessa 3,4 Mm^3 ja samalla rikastushiekka-altaiden tarvittava koko pienenee, joka vähentää ympäristöriskejä.
Resumo:
Cancer affects more than 20 million people each year and this rate is increasing globally. The Ras/MAPK-pathway is one of the best-studied cancer signaling pathways. Ras proteins are mutated in almost 20% of all human cancers and despite numerous efforts, no effective therapy that specifically targets Ras is available to date. It is now well established that Ras proteins laterally segregate on the plasma membrane into transient nanoscale signaling complexes called nanoclusters. These Ras nanoclusters are essential for the high-fidelity signal transmission. Disruption of nanoclustering leads to reduction in Ras activity and signaling, therefore targeting nanoclusters opens up important new therapeutic possibilities in cancer. This work describes three different studies exploring the idea of membrane protein nanoclusters as novel anti-cancer drug targets. It is focused on the design and implementation of a simple, cell-based Förster Resonance Energy Transfer (FRET)-biosensor screening platform to identify compounds that affect Ras membrane organization and nanoclustering. Chemical libraries from different sources were tested and a number of potential hit molecules were validated on full-length oncogenic proteins using a combination of imaging, biochemical and transformation assays. In the first study, a small chemical library was screened using H-ras derived FRET-biosensors. Surprisingly from this screen, commonly used protein synthesis inhibitors (PSIs) were found to specifically increase H-ras nanoclustering and downstream signalling in a H-ras dependent manner. Using a representative PSI, increase in H-ras activity was shown to induce cancer stem cell (CSC)-enriched mammosphere formation and tumor growth of breast cancer cells. Moreover, PSIs do not increase K-ras nanoclustering, making this screening approach suitable for identifying Ras isoform-specific inhibitors. In the second study, a nanoncluster-directed screen using both H- and K-ras derived FRET biosensors identified CSC inhibitor salinomycin to specifically inhibit K-ras nanocluster organization and downstream signaling. A K-ras nanoclusteringassociated gene signature was established that predicts the drug sensitivity of cancer cells to CSC inhibitors. Interestingly, almost 8% of patient tumor samples in the The Cancer Genome Atlas (TCGA) database had the above gene signature and were associated with a significantly higher mortality. From this mechanistic insight, an additional microbial metabolite screen on H- and K-ras biosensors identified ophiobolin A and conglobatin A to specifically affect K-ras nanoclustering and to act as potential breast CSC inhibitors. In the third study, the Ras FRET-biosensor principle was used to investigate membrane anchorage and nanoclustering of myristoylated proteins such as heterotrimeric G-proteins, Yes- and Src-kinases. Furthermore, Yes-biosensor was validated to be a suitable platform for performing chemical and genetic screens to identify myristoylation inhibitors. The results of this thesis demonstrate the potential of the Ras-derived FRETbiosensor platform to differentiate and identify Ras-isoform specfic inhibitors. The results also highlight that most of the inhibitors identified predominantly perturb Ras subcellular distribution and membrane organization through some novel and yet unknown mechanisms. The results give new insights into the role of Ras nanoclusters as promising new molecular targets in cancer and in stem cells.
Resumo:
Torrefaction is moderate thermal treatment (~200-300 °C) of biomass in an inert atmosphere. The torrefied fuel offers advantages to traditional biomass, such as higher heating value, reduced hydrophilic nature, increased its resistance to biological decay, and improved grindability. These factors could, for instance, lead to better handling and storage of biomass and increased use of biomass in pulverized combustors. In this work, we look at several aspects of changes in the biomass during torrefaction. We investigate the fate of carboxylic groups during torrefaction and its dependency to equilibrium moisture content. The changes in the wood components including carbohydrates, lignin, extractable materials and ashforming matters are also studied. And at last, the effect of K on torrefaction is investigated and then modeled. In biomass, carboxylic sites are partially responsible for its hydrophilic characteristic. These sites are degraded to varying extents during torrefaction. In this work, methylene blue sorption and potentiometric titration were applied to measure the concentration of carboxylic groups in torrefied spruce wood. The results from both methods were applicable and the values agreed well. A decrease in the equilibrium moisture content at different humidity was also measured for the torrefied wood samples, which is in good agreement with the decrease in carboxylic group contents. Thus, both methods offer a means of directly measuring the decomposition of carboxylic groups in biomass during torrefaction as a valuable parameter in evaluating the extent of torrefaction. This provides new information to the chemical changes occurring during torrefaction. The effect of torrefaction temperature on the chemistry of birch wood was investigated. The samples were from a pilot plant at Energy research Center of the Netherlands (ECN). And in that way they were representative of industrially produced samples. Sugar analysis was applied to analyze the hemicellulose and cellulose content during torrefaction. The results show a significant degradation of hemicellulose already at 240 °C, while cellulose degradation becomes significant above 270 °C torrefaction. Several methods including Klason lignin method, solid state NMR and Py-GC-MS analyses were applied to measure the changes in lignin during torrefaction. The changes in the ratio of phenyl, guaiacyl and syringyl units show that lignin degrades already at 240 °C to a small extent. To investigate the changes in the extractives from acetone extraction during torrefaction, gravimetric method, HP-SEC and GC-FID followed by GC-MS analysis were performed. The content of acetone-extractable material increases already at 240 °C torrefaction through the degradation of carbohydrate and lignin. The molecular weight of the acetone-extractable material decreases with increasing the torrefaction temperature. The formation of some valuable materials like syringaresinol or vanillin is also observed which is important from biorefinery perspective. To investigate the change in the chemical association of ash-forming elements in birch wood during torrefaction, chemical fractionation was performed on the original and torrefied birch samples. These results give a first understanding of the changes in the association of ashforming elements during torrefaction. The most significant changes can be seen in the distribution of calcium, magnesium and manganese, with some change in water solubility seen in potassium. These changes may in part be due to the destruction of carboxylic groups. In addition to some changes in water and acid solubility of phosphorous, a clear decrease in the concentration of both chlorine and sulfur was observed. This would be a significant additional benefit for the combustion of torrefied biomass. Another objective of this work is studying the impact of organically bound K, Na, Ca and Mn on mass loss of biomass during torrefaction. These elements were of interest because they have been shown to be catalytically active in solid fuels during pyrolysis and/or gasification. The biomasses were first acid washed to remove the ash-forming matters and then organic sites were doped with K, Na, Ca or Mn. The results show that K and Na bound to organic sites can significantly increase the mass loss during torrefaction. It is also seen that Mn bound to organic sites increases the mass loss and Ca addition does not influence the mass loss rate on torrefaction. This increase in mass loss during torrefaction with alkali addition is unlike what has been found in the case of pyrolysis where alkali addition resulted in a reduced mass loss. These results are important for the future operation of torrefaction plants, which will likely be designed to handle various biomasses with significantly different contents of K. The results imply that shorter retention times are possible for high K-containing biomasses. The mass loss of spruce wood with different content of K was modeled using a two-step reaction model based on four kinetic rate constants. The results show that it is possible to model the mass loss of spruce wood doped with different levels of K using the same activation energies but different pre-exponential factors for the rate constants. Three of the pre-exponential factors increased linearly with increasing K content, while one of the preexponential factors decreased with increasing K content. Therefore, a new torrefaction model was formulated using the hemicellulose and cellulose content and K content. The new torrefaction model was validated against the mass loss during the torrefaction of aspen, miscanthus, straw and bark. There is good agreement between the model and the experimental data for the other biomasses, except bark. For bark, the mass loss of acetone extractable material is also needed to be taken into account. The new model can describe the kinetics of mass loss during torrefaction of different types of biomass. This is important for considering fuel flexibility in torrefaction plants.
Resumo:
The aim of this Master’s thesis focused on the oxidation of sodium thiosulfate using non thermal plasma technology as an advance oxidation process (AOP). By using this technology we can degrade certain toxic chemical compounds present in mining wastewaters as pollutants. Different concentrations of thiosulfate and pulse frequencies were used in the PCD experiments and the results in terms of various delivered energies (kWh/m3) and degradation kinetics were compared. Pulsed corona discharge is an energy efficient process compared to other oxidation processes using for the treatment of waste water pollutants. Due to its simplicity and low energy costs make it attractive in the field of waste water treatment processes. This technology of wastewater treatment has been tested mainly on pilot scale level and in future the attempts are to be focus on PCD investigations on larger process scale. In this research work of oxidation of thiosulfate using pulsed corona discharge, the main aim of this research was to study degradation of a studied toxic and not environmental friendly chemical compound. The focus of this research was to study the waste waters coming from the gold mines containing leachate compound thiosulfate. Literature review contained also gold leaching process when cyanide is used as the leachate. Another objective of this work was to compare PCD process with other processes based on their energy efficiencies. In the experimental part two concentrations of sodium thiosulfate, 1000ppm and 400ppm, were used. Two pulse generator frequencies of 833 and 200 pulses per second (pps) were used. The chemical analyses of the samples taken during semi-batch PCD oxidation process were analyzed by ion chromatographic (IC). It is observed after the analyses that among different frequencies and concentrations, the most suitable ones for the process is 200pps and 1000ppm respectively because the pollutants present in the waste water has more time to react with the OH radicals which are the oxidants and the process is energy efficient compared to other frequencies.