65 resultados para Chemical Libraries
Improving the competitiveness of electrolytic Zinc process by chemical reaction engineering approach
Resumo:
This doctoral thesis describes the development work performed on the leachand purification sections in the electrolytic zinc plant in Kokkola to increase the efficiency in these two stages, and thus the competitiveness of the plant. Since metallic zinc is a typical bulk product, the improvement of the competitiveness of a plant was mostly an issue of decreasing unit costs. The problems in the leaching were low recovery of valuable metals from raw materials, and that the available technology offered complicated and expensive processes to overcome this problem. In the purification, the main problem was consumption of zinc powder - up to four to six times the stoichiometric demand. This reduced the capacity of the plant as this zinc is re-circulated through the electrolysis, which is the absolute bottleneck in a zinc plant. Low selectivity gave low-grade and low-value precipitates for further processing to metallic copper, cadmium, cobalt and nickel. Knowledge of the underlying chemistry was poor and process interruptions causing losses of zinc production were frequent. Studies on leaching comprised the kinetics of ferrite leaching and jarosite precipitation, as well as the stability of jarosite in acidic plant solutions. A breakthrough came with the finding that jarosite could precipitate under conditions where ferrite would leach satisfactorily. Based on this discovery, a one-step process for the treatment of ferrite was developed. In the plant, the new process almost doubled the recovery of zinc from ferrite in the same equipment as the two-step jarosite process was operated in at that time. In a later expansion of the plant, investment savings were substantial compared to other technologies available. In the solution purification, the key finding was that Co, Ni, and Cu formed specific arsenides in the “hot arsenic zinc dust” step. This was utilized for the development of a three-step purification stage based on fluidized bed technology in all three steps, i.e. removal of Cu, Co and Cd. Both precipitation rates and selectivity increased, which strongly decreased the zinc powder consumption through a substantially suppressed hydrogen gas evolution. Better selectivity improved the value of the precipitates: cadmium, which caused environmental problems in the copper smelter, was reduced from 1-3% reported normally down to 0.05 %, and a cobalt cake with 15 % Co was easily produced in laboratory experiments in the cobalt removal. The zinc powder consumption in the plant for a solution containing Cu, Co, Ni and Cd (1000, 25, 30 and 350 mg/l, respectively), was around 1.8 g/l; i.e. only 1.4 times the stoichiometric demand – or, about 60% saving in powder consumption. Two processes for direct leaching of the concentrate under atmospheric conditions were developed, one of which was implemented in the Kokkola zinc plant. Compared to the existing pressure leach technology, savings were obtained mostly in investment. The scientific basis for the most important processes and process improvements is given in the doctoral thesis. This includes mathematical modeling and thermodynamic evaluation of experimental results and hypotheses developed. Five of the processes developed in this research and development program were implemented in the plant and are still operated. Even though these processes were developed with the focus on the plant in Kokkola, they can also be implemented at low cost in most of the zinc plants globally, and have thus a great significance in the development of the electrolytic zinc process in general.
Resumo:
The study evaluates the potential application of chemical substances, obtained from biogas plants` by-products. Through the anaerobic digestion process with biogas the large amount of digestate is produced. This digestate mainly consists on the organic matter with the high concentration of nutrients such as nitrogen and phosphorus. During ammonia stripping and phosphorus precipitation the products- ammonia water, ammonium sulfate, ammonium nitrate, ferrous phosphate, aluminum phosphate, calcium phosphate and struvite can be recovered. These chemicals have potential application in different industrial sectors. According to Finnish market and chemicals properties, the most perspective industrial applications were determined. Based on the data, obtained through the literature review and market study, the ammonia water was recognized as a most perspective recovered substances. According to interview provided among Finnish companies, ammonia water is used for flue gas treatment in SNCR technology. This application has a large scale in the framework of Finnish industrial sectors. As well nitrogen with phosphorous can be used as a source of nutrients in the biological wastewater treatment plants of paper mills.
Resumo:
Social media has become a part of many people’s everyday lives. In the library field the adoption of social media has been widespread and discussions of the development of “Library 2.0” began at an early stage. The aim with this thesis is to study the interface between public libraries, social media, and users, focusing on information activities. The main research question is: How is the interface between public libraries and social media perceived and acted upon by its main stakeholders (library professionals and users)? The background of Library 2.0 is strongly associated with the development of the Web and social media, as well as with the public libraries and their user-centered and information technological development. The theoretical framework builds on the research within the area of Library and Information Science concerning information behavior, information practice, and information activities. Earlier research on social media and public libraries is also highlighted in this thesis. The methods survey and content analysis were applied to map the interface between social media and public libraries. A questionnaire was handed out to the users and another questionnaire was sent out to the library professionals. The results were statistically analyzed. In the content analysis public library Facebook pages were studied. All the empirical investigations were conducted in the area of Finland Proper. An integrated analysis of the results deepens the understanding of the key elements of the social media and public library context. These elements are interactivity, information activities, perceptions, and stakeholders. In this context seven information activities were distinguished: reading, seeking, creating, communicating, informing, mediating, and contributing. This thesis contributes to develop the research concerning information activities and draws a realistic picture of the challenges and opportunities in the social media and public library context. It also contributes with knowledge on library professionals and library users, and the existing differences in their perceptions of the interface between libraries and social media.
Resumo:
Surface chemistry is of great importance in plant biomass engineering and applications. The surface chemical composition of biomass which includes lignin, carbohydrates and extractives influences its interactions with chemical agents, such as pulp processing/papermaking chemicals, or enzymes for different purposes. In this thesis, the changes in the surface chemical composition of lignocellulosic biomass after physical modification for the improvement of resulting paper properties and chemical treatment for the enhancement of enzymatic hydrolysis were investigated. Low consistency (LC) refining was used as physical treatment of bleached softwood and hardwood pulp samples, and the surface chemistry of refined samples was investigated. The refined pulp was analysed as whole pulp while the fines-free fibre samples were characterized separately. The fines produced in LCrefining contributed to an enlarged surface specific area as well as the change of surface coverage by lignin and extractives, as investigated by X-ray photoelectron spectroscopy (XPS). The surface coverage by lignin of the whole pulp decreased after refining while the surface coverage by extractives increased both for pine and eucalyptus. In the case of pine, the removal of fines resulted in reduction of the surface coverage by extractives, while the surface coverage by lignin increased on fibre sample (without fines). In the case of eucalyptus, the surface coverage by lignin of fibre samples decreased after the removal of fines. In addition, the surface distribution of carbohydrates, lignin and extractives of pine and eucalyptus samples was determined by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). LC-refining increased the amounts of pentose, hexose and extractives on the surface of pine samples. ToF-SIMS also gave clear evidence about xylan deposition and reduction of surface lignin distribution on the fibre of eucalyptus. However, the changes in the surface chemical composition during the physical treatment has led to an increase in the adsorption of fluorescent whitening agents (FWAs) on fibres due to a combination of electro-static forces, specific surface area of fibres and hydrophobic interactions. Various physicochemical pretreatments were conducted on wood and non-wood biomass for enhancing enzymatic hydrolysis of polysaccharides, and the surface chemistry of the pretreated and enzymatically hydrolysed samples was investigated by field emission scanning electron microscopy (FE-SEM), XPS and ToF-SIMS. A hydrotrope was used as a relatively novel pretreatment technology both in the case of wood and non-wood biomass. For comparison, ionic liquid and hydrothermal pretreatments were applied on softwood and hardwood as well. Thus, XPS analysis showed that the surface lignin was more efficiently removed by hydrotropic pretreatment compared to ionic liquid or hydrothermal pretreatments. SEM analysis also found that already at room temperature the ionic liquid pretreatments were more effective in swelling the fibres compared with hydrotropic pretreatment at elevated temperatures. The enzymatic hydrolysis yield of hardwood was enhanced due to the decrease in surface coverage of lignin, which was induced by hydrotropic treatment. However, hydrotropic pretreatment was not appropriate for softwood because of the predominance of guaiacyl lignin structure in this material. In addition, the reduction of surface lignin and xylan during pretreatment and subsequent increase in cellulose hydrolysis by enzyme could be observed from ToF-SIMS results. The characterisation of the non-wood biomass (e.g. sugarcane bagasse and common reed) treated by hydrotropic method, alkaline and alkaline hydrogen peroxide pretreatments were carried out by XPS and ToF-SIMS. According to the results, the action for the removal of the surface lignin of non-wood biomass by hydrotropic pretreatment was more significant compared to alkaline and alkaline hydrogen peroxide pretreatments, although a higher total amount of lignin could be removed by alkaline and alkaline hydrogen peroxide pretreatment. Furthermore, xylan could be remarkably more efficiently removed by hydrotropic method. Therefore, the glucan yield achieved from hydrotropic treated sample was higher than that from samples treated with alkaline or alkaline hydrogen peroxide. Through the use of ToF-SIMS, the distribution and localization of lignin and carbohydrates on the surface of ignocelluloses during pretreatment and enzymatic hydrolysis could be detected, and xylan degradation during enzymatic hydrolysis could also be assessed. Thus, based on the results from XPS and ToF-SIMS, the mechanism of the hydrotropic pretreatment in improving the accessibility of enzymes to fibre and further ameliorating of the enzymatic saccharification could be better elucidated.
Resumo:
Förståelse av olika ytors vätningsegenskaper är viktig i många pappers-relaterade industriella processer eftersom vätningen påverkar materialbeteendet, t.ex. vid bestrykning, tryckning och laminering. Förmågan att kontrollera vätningen är av intresse, därför att den ger nya möjligheter till modifikation av ytor. Vätningen styrs av ytans struktur och kemi. Kunskap om dessa egenskaper krävs både i fundamentala studier och för industriella applikationer. Nanopartiklar används ofta för att skapa funktionella ytor med mångsidiga egenskaper. Detta arbete strävar till att förstå de fysikalisk-kemiska egenskaperna hos papper och kartong som är bestrukna med nanopartiklar, för att sedan kunna förklara de observerade förändringarna i ytornas vätningsförmåga. Funktionella ytor med justerbar vätningsförmåga tillverkades genom att deponera nanopartiklar i en rulle-till-rulle vätskeflammasprutningprocess (LFS). TiO2 -nanopartikelbeläggningen skapar en superhydrofob yta som har över 160° kontaktvinkelmed vatten, medan SiO2-nanopartikelbeläggningar skapar mycket hydrofila ytor med kontaktvinklar så låga som 21° med vatten. Superhydrofobiciteten eller hydrofiliteten är ett resultat av den kombinerade effekten hos ytstrukturen och ytkemin, såsom nanopartiklarnas oxidationsnivå eller karbonatiseringsnivå. Kartongytor som är bestrukna med TiO2-nanopartiklar kan vara såväl superhydrofoba som hydrofila. Hydrofilitet kan induceras genom UVA-strålning, medan behandling i hög temperatur i ugn resulterar i en superhydrofob yta. Ett mål med arbetet var att förstå mekanismerna hos de kemiska för ändringar som sker under UVA-bestrålning och värmebehandling av ytor, bestrukna med TiO2-nanopartiklar. Ytornas abrasions- och kompressionsmotstånd samt relaterade förändringar i funktionella egenskaper undersöktes. Resultaten skapar en bättre förståelse för potentiell användning av LFS-nanopartikelbeläggningar i pappersrelaterade applikationer. En förståelse för stabiliteten hos nanopartikelbeläggningarna när de exponeras för externa krafter är viktig för att försäkra deras funktionalitet i industriella applikationer och för att garantera beläggningarnas miljö-, hälso- och säkerhetsaspekter. ------------------------------------------ Pinnan kastumisominaisuuksien hallinta on tärkeää monissa paperiteollisuuden prosesseissa, sillä pinnan kastuminen vaikuttaa esimerkiksi päällystämiseen, painamiseen ja laminointiin. Pinnan kastuvuuden säätäminen avaa mielenkiintoisia uusia mahdollisuuksia pintojen ominaisuuksien hallintaan. Pinnan kastuvuus määräytyy pinnan rakenteesta ja kemiasta, ja näiden ominaisuuksien ymmärtäminen on tärkeää sekä perustutkimuksessa että teollisissa sovelluksissa. Nanopartikkeleita käytetään usein toiminnallisten ja hallitusti kastuvien pintojen aikaansaamiseksi. Tässä työssä on tarkasteltu nanopartikkelipinnoitetun paperin ja kartongin fysikaalis-kemiallisia pintaominaisuuksia, jotka selittävät havaittuja muutoksia pinnan kastuvuudessa. Toiminnalliset pinnat säädettävillä kastuvuusominaisuuksilla valmistettiin nesteliekkiruiskutus (LFS) nanopartikkelipinnoituksella rullalta rullalle-menetelmällä. TiO2-nanopartikkelipäällystys saa aikaan superhydrofobisen pinnan, jonka veden kontaktikulma on suurempi kuin 160°. Toisaalta SiO2-nanopartikkelipäällystys muuttaa pinnan hyvin hydrofiiliseksi, veden kontaktikulman ollessa vain 21°. Pinnan superhydrofobisuus tai hydrofiilisyys riippuu nanopartikkelipinnan rakenteesta ja pintakemiasta kuten pinnan hapettumisasteesta ja hiilipitoisuudesta. TiO2-nanopartikkelipinnoitetun kartonkipinnan kastumista voidaan säätää superhydrofobisen ja hydrofiilisen välillä. Pinnan hydrofiilisyys saadaan aikaan UVA-valolla, kun taas superhydrofobinen pinta voidaan palauttaa korkeassa lämpötilassa uunissa. Tämän työn tavoitteena oli selvittää, millaisia muutoksia TiO2-nanopartikkelipäällystetyn pinnan kemiassa tapahtuu UVA-valon ja lämpökäsittelyn vaikutuksesta. Työssä tarkasteltiin myös pinnan mekaanisen hankauksen ja kokoonpuristuksen vaikutusta toiminnallisiin ominaisuuksiin. Työssä saavutetut tulokset auttavat ymmärtämään LFS-nanopartikkelipäällystettyjen pintojen soveltuvuutta paperiin liittyvissä sovelluksissa. Nanopartikkelipäällystettyjen pintojen stabiilius ulkoisten voimien alaisena on tärkeää toiminnallisten päällystysten ympäristö-, terveys- ja turvallisuusnäkökulmia tarkasteltaessa.
Resumo:
Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
In the framework of the biorefinery concept researchers aspire to optimize the utilization of plant materials, such as agricultural wastes and wood. For most of the known processes, the first steps in the valorisation of biomass are the extraction and purification of the individual components. The obtained raw products by means of a controlled separation can consecutively be modified to result in biofuels or biogas for energy production, but also in value-added products such as additives and important building blocks for the chemical and material industries. Considerable efforts are undertaken in order to substitute the use of oil-based starting materials or at least minimize their processing for the production of everyday goods. Wood is one of the raw materials, which have gained large attention in the last decades and its composition has been studied in detail. Nowadays, the extraction of water-soluble hemicelluloses from wood is well known and so for example xylan can be obtained from hardwoods and O-acetyl galactoglucomannans (GGMs) from softwoods. The aim of this work was to develop water-soluble amphiphilic materials of GGM and to assess their potential use as additives. Furthermore, GGM was also applied as a crosslinker in the synthesis of functional hydrogels for the removal of toxic metals and metalloid ions from aqueous solutions. The distinguished products were obtained by several chemical approaches and analysed by nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR), size exclusion chromatography (SEC), thermal gravimetric analysis (TGA), scanning electron microscope SEM, among others. Bio-based surfactants were produced by applying GGM and different fatty acids as starting materials. On one hand, GGM-grafted-fatty acids were prepared by esterification and on the other hand, well-defined GGM-block-fatty acid derivatives were obtained by linking amino-functional fatty acids to the reducing end of GGM. The reaction conditions for the syntheses were optimized and the resultant amphiphilic GGM derivatives were evaluated concerning their ability to reduce the surface tension of water as surfactants. Furthermore, the block-structured derivatives were tested in respect to their applicability as additives for the surface modification of cellulosic materials. Besides the GGM surfactants with a bio-based hydrophilic and a bio-based hydrophobic part, also GGM block-structured derivatives with a synthetic hydrophobic tail, consisting of a polydimethylsiloxane chain, were prepared and assessed for the hydrophobization of surface of nanofibrillated cellulose films. In order to generate GGM block-structured derivatives containing a synthetic tail with distinguished physical and chemical properties, as well as a tailored chain length, a controlled polymerization method was used. Therefore, firstly an initiator group was introduced at the reducing end of the GGM and consecutively single electron transfer-living radical polymerization (SET-LRP) was performed by applying three different monomers in individual reactions. For the accomplishment of the synthesis and the analysis of the products, challenges related to the solubility of the reactants had to be overcome. Overall, a synthesis route for the production of GGM block-copolymers bearing different synthetic polymer chains was developed and several derivatives were obtained. Moreover, GGM with different molar masses were, after modification, used as a crosslinker in the synthesis of functional hydrogels. Hereby, a cationic monomer was used during the free radical polymerization and the resultant hydrogels were successfully tested for the removal of chromium and arsenic ions from aqueous solutions. The hydrogel synthesis was tailored and materials with distinguished physical properties, such as the swelling rate, were obtained after purification. The results generated in this work underline the potential of bio-based products and the urge to continue carrying out research in order to be able to use more green chemicals for the manufacturing of biorenewable and biodegradable daily products.
Resumo:
Esitys Dries Moreelsin tapaamisessa (Ghent University Library) 15.–16.10. 2014, Vallila Helsinki. /Performance at visit of Dries Moreels Ghent University Library oct 15th- oct 16th 2014, Vallila Helsinki.
Resumo:
Esitys Helsingissä 24.9.2014.
Resumo:
This doctoral dissertation presents studies of the formation and evolution of galaxies, through observations and simulations of galactic halos. The halo is the component of galaxies which hosts some of the oldest objects we know of in the cosmos; it is where clues to the history of galaxies are found, for example, by how the chemical structure is related to the dynamics of objects in the halo. The dynamical and chemical structure of halos, both in the Milky Way’s own halo, and in two elliptical galaxies, is the underlying theme in the research. I focus on the density falloff and chemistry of the two external halos, and on the dynamics, density falloff, and chemistry of the Milky Way halo. I first study galactic halos via computer simulations, to test the long- term stability of an anomalous feature recently found in kinematics of the Milky Way’s metal-poor stellar halo. I find that the feature is transient, making its origin unclear. I use a second set of simulations to test if an initially strong relation between the dynamics and chemistry of halo glob-ular clusters in a Milky Way-type galaxy is affected by a merging satellite galaxy, and find that the relation remains strong despite a merger in which the satellite is a third of the mass of the host galaxy. From simulations, I move to observing halos in nearby galaxies, a challenging procedure as most of the light from galaxies comes from the disk and bulge components as opposed to the halo. I use Hubble Space Tele scope observations of the halo of the galaxy M87 and, comparing to similar observations of NGC 5128, find that the chemical structure of the inner halo is similar for both of these giant elliptical galaxies. I use Very Large Telescope observations of the outer halo of NGC 5128 (Centaurus A) and, because of the difficultly in resolving dim extragalac- tic stellar halo populations, I introduce a new technique to subtract the contaminating background galaxies. A transition from a metal-rich stellar halo to a metal-poor has previously been discovered in two different types of galaxies, the disk galaxy M31 and the classic elliptical NGC 3379. Unexpectedly, I discover in this third type of galaxy, the merger remnant NGC 5128, that the density of metal-rich and metal-poor halo stars falls at the same rate within the galactocentric radii of 8 − 65 kpc, the limit of our observations. This thesis presents new results which open opportunities for future investigations.