52 resultados para Bio(muco)bioadhesion measurements
Resumo:
The two central goals of this master's thesis are to serve as a guidebook on the determination of uncertainty in efficiency measurements and to investigate sources of uncertainty in efficiency measurements in the field of electric drives by a literature review, mathematical modeling and experimental means. The influence of individual sources of uncertainty on the total instrumental uncertainty is investigated with the help of mathematical models derived for a balance and a direct air cooled calorimeter. The losses of a frequency converter and an induction motor are measured with the input-output method and a balance calorimeter at 50 and 100 % loads. A software linking features of Matlab and Excel is created to process measurement data, calculate uncertainties and to calculate and visualize results. The uncertainties are combined with both the worst case and the realistic perturbation method and distributions of uncertainty by source are shown based on experimental results. A comparison of the calculated uncertainties suggests that the balance calorimeter determines losses more accurately than the input-output method with a relative RPM uncertainty of 1.46 % compared to 3.78 - 12.74 % respectively with 95 % level of confidence at the 93 % induction motor efficiency or higher. As some principles in uncertainty analysis are open to interpretation the views and decisions of the analyst can have noticeable influence on the uncertainty in the measurement result.
Resumo:
Optimization of quantum measurement processes has a pivotal role in carrying out better, more accurate or less disrupting, measurements and experiments on a quantum system. Especially, convex optimization, i.e., identifying the extreme points of the convex sets and subsets of quantum measuring devices plays an important part in quantum optimization since the typical figures of merit for measuring processes are affine functionals. In this thesis, we discuss results determining the extreme quantum devices and their relevance, e.g., in quantum-compatibility-related questions. Especially, we see that a compatible device pair where one device is extreme can be joined into a single apparatus essentially in a unique way. Moreover, we show that the question whether a pair of quantum observables can be measured jointly can often be formulated in a weaker form when some of the observables involved are extreme. Another major line of research treated in this thesis deals with convex analysis of special restricted quantum device sets, covariance structures or, in particular, generalized imprimitivity systems. Some results on the structure ofcovariant observables and instruments are listed as well as results identifying the extreme points of covariance structures in quantum theory. As a special case study, not published anywhere before, we study the structure of Euclidean-covariant localization observables for spin-0-particles. We also discuss the general form of Weyl-covariant phase-space instruments. Finally, certain optimality measures originating from convex geometry are introduced for quantum devices, namely, boundariness measuring how ‘close’ to the algebraic boundary of the device set a quantum apparatus is and the robustness of incompatibility quantifying the level of incompatibility for a quantum device pair by measuring the highest amount of noise the pair tolerates without becoming compatible. Boundariness is further associated to minimum-error discrimination of quantum devices, and robustness of incompatibility is shown to behave monotonically under certain compatibility-non-decreasing operations. Moreover, the value of robustness of incompatibility is given for a few special device pairs.
Resumo:
Preventive maintenance of frequency converters has been based on pre-planned replace-ment of wearing or ageing components. Exchange intervals follow component life-time expectations which are based on empirical knowledge or schedules defined by manufac-turer. However, the lifetime of a component can vary significantly, because drives are used in very different operating environments and applications. The main objective of the research was to provide information on methods, i.e. how in-verter's operating condition can be measured reliably under field conditions. At first, the research focused on critical components such as current transducers, IGBTs and DC link capacitor bank, because these aging have already been identified. Of these, the DC link capacitor measurement method was selected for closer examination. With this method, the total capacitance and its total series resistance can be measured. The suitability of the measuring procedure was estimated on the basis of practical measurements. The research was made by using so called triangulation method, including a literature review, simulations and practical measurements. Based on the results, the new measu-rement method seems suitable with some reservations to practical measurements. How-ever, the measuring method should be further developed in order to improve its reliability.
Resumo:
The thesis focuses on light water reactors (pressurized water reactors, boiling water reactors) and measurement techniques for basic thermal hydraulics parameters that are used in a nuclear power plant. The goal of this work is a development of laboratory exercises for basic nuclear thermal hydraulics measurements.
Resumo:
In this thesis, bacteriorhodopsin (BR) photosensor’s optical and electrical properties were studied. The BR sensor consisted of a dry film with BR in polyvinyl alcohol and covered with transparent conductors. In the experiments the BR photocycle was started with two lasers. The characteristics of the BR sensor were measured in two ways. The first approach was theoretical and it required knowing the laser parameters. The second way required assembling a measurement setup for the optical response measurements. However, no measurable results were obtained due to low laser power. The photoelectric response was measured in the experiments with two laser systems and the amplifier was tested. In the experiment with a Cavitar laser, the photoelectric response was obtained. In the experiment with FemtoFiber Pro laser, the photoelectric response was not measured. The expected amplitude of the response was obtained. The experimental data was analyzed and possible solutions for reducing the interference were given.
Resumo:
Coal slurry was of vital interest during the last century due to its potential as an alternative fuel where liquid fuels were necessary. Recently, environmental impacts of the traditional fuels, similarities of bio-coal to that of coal, and huge bio-coal supply has attracted the attention to prepare bio-coal slurries as a new fuel. Rudolf Diesel who invented the diesel engine on 1895 was of the opinion that diesel engines are capable to use different kinds of fuels due to the special design. He tried some kind of vegetable oil to operate on his IC engine. Recently, due to high energy density and more environmentally friendly fuel, researchers believe that bio-coal slurries could act as a new alternative fuel in large diesel engines. Loads of research on different kinds of bio-coal slurry were done by the other researchers worldwide and a lot of progress to boost slurry’s quality were achieved recently. The present study aims to achieve the ideal condition of different factors affecting on the quality of bio-coal slurry. One charcoal sample and two kinds of torrefied wood were used to investigate and compare the reaction of various factors. The results show a great gap between the quality of slurries made of different samples and more researches are necessary to fully understand the impact of the different parameter and improving the quality.
Resumo:
The purpose of this Master’s thesis is to study value co-creation in emerging value network. The main objective is to examine how value is co-created in bio-based chemicals value network. The study provides insights to different actors’ perceived value in the value network and enlightens their motivations to commit to the collaborative partnerships with other actors. Empirical study shows that value co-creation is creation of mutual value for both parties of the relationship by combining their non-competing resources to achieve a common goal. Value co-creation happens in interactions, and trust, commitment and information sharing are essential prerequisites for value co-creation. Value co-creation is not only common value creation, but it is also value that emerges for each actor because of the co-operation with the other actor. Even though the case companies define value mainly in economic terms, the other value elements like value of the partnership, knowledge transfer and innovation are more important for value co-creation.