37 resultados para zirconia ceramic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays biomass transformation has a great potential for the synthesis of value-added compounds with a wide range of applications. Terpenoids, extracted from biomass, are inexpensive and renewable raw materials which often have a biological activity and are widely used as important organic platform molecules in the development of new medicines as well as in the synthesis of fine chemicals and intermediates. At the same time, special attention is devoted to the application of gold catalysts to fine chemical synthesis due to their outstanding activity and/or selectivity for transformations of complex organic compounds. Conversion of renewable terpenoids in the presence of gold nanoparticles is one of the new and promising directions in the transformation of biomass to valuable chemicals. In the doctoral thesis, different kinds of natural terpenoids, such as α-pinene, myrtenol and carvone were selected as starting materials. Gold catalysts were utilized for the promising routes of these compounds transformation. Investigation of selective α-pinene isomerization to camphene, which is an important step in an industrial process towards the synthesis of camphor as well as other valuable substrates for the pharmaceutical industry, was performed. A high activity of heterogeneous gold catalysts in the Wagner-Meerwein rearrangement was demonstrated for the first time. Gold on alumina carrier was found to reach the α-pinene isomerization conversion up to 99.9% and the selectivity of 60-80%, thus making this catalyst very promising from an industrial viewpoint. A detailed investigation of kinetic regularities including catalyst deactivation during the reaction was performed. The one-pot terpene alcohol amination, which is a promising approach to the synthesis of valuable complex amines having specific physiological properties, was investigated. The general regularities of the one-pot natural myrtenol amination in the presence of gold catalysts as well as a correlation between catalytic activity, catalyst redox treatment and the support nature were obtained. Catalytic activity and product distribution were shown to be strongly dependent on the support properties, namely acidity and basicity. The gold-zirconia (Au/ZrO2) catalyst pretreated under oxidizing atmosphere was observed to be rather active, resulting in the total conversion of myrtenol and the selectivity to the corresponding amine of about 53%. The reaction kinetics was modelled based on the mechanistic considerations with the catalyst deactivation step incorporated in the mechanism. Carvone hydrogenation over a gold catalyst was studied with the general idea of investigating both the activity of gold catalysts in competitive hydrogenation of different functional groups and developing an approach to the synthesis of valuable carvone derivatives. Gold was found to promote stereo- and chemoselective carvone hydrogenation to dihydrocarvone with a predominant formation of the trans-isomer, which generally is a novel synthetic method for an industrially valuable dihydrocarvone. The solvent effect on the catalytic activity as well as on the ratio between trans- and cis-dihydrocarvone was evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fiskars konserniin kuuluvan Arabian posliinitehtaan tuotantostrategia on päivitetty edellisen kerran vuonna 2008. Tuolloin on määritelty ne tuoteryhmät jotka hankitaan ulkopuolisilta toimittajilta sekä ne tuoteryhmät jotka valmistetaan omalla tehtaalla. Tuotteiden yksikkökustannusten merkittävän nousun myötä, tuotantostrategiaa on tullut tarvetta muuttaa, kuitenkin niin että omalla tehtaalla on rooli sekä valmistusyksikkönä että osaamiskeskuksena. Diplomityössä tarkastellaan Arabian tehtaan tilannetta nykyisten valmistusteknologioiden, ydinosaamisen, nykyisen toimittajakentän ja kustannusrakenteiden kautta sekä kuvataan nykyisen tuotantostrategian haasteet. Teorian tarjoaman viitekehyksen ja Fiskars Operating Modelin suuntaviivoja noudattaen laaditaan tehtaalle uusi tuotantostrategia, jonka avulla määritellään tehtaalla valmistettavat tuoteryhmät, valmistusteknologiat ja tarvittavat investoinnit. Lisäksi määritellään tehtaalle rooli keraamisen osaamisen keskuksena ja vierailukohteena.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent times the packaging industry is finding means to maximize profit. Wood used to be the most advantageous and everyday material for packaging, worktables, counters, constructions, interiors, tools and as materials and utensils in the food companies in the world. The use of wood has declined vigorously, and other materials like plastic, ceramic, stainless steel, concrete, and aluminum have taken its place. One way that the industry could reduce its cost is by finding possibilities of using wood for primary packaging after which it can be safely recycled or burned as a carbon source for energy. Therefore, the main objective of this thesis is to investigate the possibility of press-forming a wood film into primary packaging. In order to achieve the stated objectives, discussion on major characteristics of wood in terms of structure, types and application were studied. Two different wood species, pine and birch were used for the experimental work. These were provided by a local carpentry workshop in Lappeenranta and a workshop in Ruokolahti supervised by Professor Timo Kärki. Laboratory tests were carried out at Lappeenranta University of Technology FMS workshop on Stenhøj EPS40 M hydraulic C-frame press coupled with National Instruments VI Logger and on the Adjustable packaging line machine at LUT Packaging laboratory. The tests succeeded better on the LUT packaging line than on the Stenhoj equipment due to the integrated heating system in the machine. However, there is much work to be done before the quality of a tray produced from the wood film is comparable to that of the wood plastic composite tray.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fiber-reinforced composite fixed dental prostheses – Studies of the materials used as pontics University of Turku, Faculty of Medicine, Institute of Dentistry, Department of Biomaterials Science, Finnish Doctoral Program in Oral Sciences – FINDOS, Annales Universitatis Turkuensis, Turku, Finland 2015 Fiber-reinforced composites (FRC), a non-metallic biomaterial, represent a suitable alternative in prosthetic dentistry when used as a component of fixed dental prostheses (FDPs). Some drawbacks have been identified in the clinical performance of FRC restorations, such as delamination of the veneering material and fracture of the pontic. Therefore, the current series of studies were performed to investigate the possibilities of enhancing the mechanical and physical properties of FRC FDPs by improving the materials used as pontics, to then heighten their longevity. Four experiments showed the importance of the pontic design and surface treatment in the performance of FRC FDPs. In the first, the load-bearing capacities of inlay-retained FRC FDPs with pontics of various materials and thicknesses were evaluated. Three different pontic materials were assessed with different FRC framework vertical positioning. Thicker pontics showed increased load-bearing capacities, especially ceramic pontics. A second study was completed investigating the influence of the chemical conditioning of the ridge-lap surface of acrylic resin denture teeth on their bonding to a composite resin. Increased shear bond strength demonstrated the positive influence of the pretreatment of the acrylic surfaces, indicating dissolution of the denture surfaces, and suggesting potential penetration of the monomer systems into the surface of denture teeth. A third study analyzed the penetration depth of different monomer systems on the acrylic resin denture teeth surfaces. The possibility of establishing a durable bond between acrylic pontics and FRC frameworks was demonstrated by the ability of monomers to penetrate the surface of acrylic resin denture teeth, measured by a confocal scanning type microscope. A fourth study was designed to evaluate the load-bearing capacities of FRC FDPs using the findings of the previous three studies. In this case, the performance of pre-shaped acrylic resin denture teeth used as pontics with different composite resins as filling materials was evaluated. The filling material influenced the load-bearing capacities, providing more durable FRC FDPs. It can be concluded that the mechanical and physical properties of FRC FDPs can be improved as has been shown in the development of this thesis. The improvements reported then might provide long lasting prosthetic solutions of this kind, positioning them as potentially permanent rehabilitation treatments. Key words: fiber-reinforced composite, fixed dental prostheses, inlay-retained bridges, adhesion, acrylic resin denture teeth, dental material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Full contour monolithic zirconia restorations have shown an increased popularity in the dental field over the recent years, owing to its mechanical and acceptable optical properties. However, many features of the restoration are yet to be researched and supported by clinical studies to confirm its place among the other indirect restorative materials This series of in vitro studies aimed at evaluating and comparing the optical and mechanical properties, light cure irradiance, and cement polymerization of multiple monolithic zirconia material at variable thicknesses, environments, treatments, and stabilization. Five different monolithic zirconia materials, four of which were partially stabilized and one fully stabilized were investigated. The optical properties in terms of surface gloss, translucency parameter, and contrast ratio were determined via a reflection spectrophotometer at variable thicknesses, coloring, sintering method, and after immersion in an acidic environment. Light cure irradiance and radiant exposure were quantified through the specimens at variable thicknesses and the degree of conversion of two dual-cure cements was determined via Fourier Transform Infrared spectroscopy. Bi-axial flexural strength was evaluated to compare between the partially and fully stabilized zirconia prepared using different coloring and sintering methods. Surface characterization was performed using a scanning electron microscope and a spinning disk confocal microscope. The surface gloss and translucency of the zirconia investigated were brand and thickness dependent with the translucency values decreasing as the thickness increased. Staining decreased the translucency of the zirconia and enhanced surface gloss as well as the flexural strength of the fully stabilized zirconia but had no effect on partially stabilized zirconia. Immersion in a corrosive acid increased surface gloss and decreased the translucency of some zirconia brands. Zirconia thickness was inversely related to the amount of light irradiance, radiant exposure, and degree of monomer conversion. Type of sintering furnace had no effect on the optical and mechanical properties of zirconia. Monolithic zirconia maybe classified as a semi-translucent material that is well influenced by the thickness, limiting its use in the esthetic zones. Conventional acid-base reaction, autopolymerizing and dual-cure cements are recommended for its cementation. Its desirable mechanical properties give it a high potential as a restoration for posterior teeth. However, close monitoring with controlled clinical studies must be determined before any definite clinical recommendations can be drawn.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, Sr2FeMoO6 (SFMO) thin films were studied with the main focus on their magnetic and magneto-transport properties. The fabrication process of pulsed laser deposited SFMO films was first optimized. Then the effects of strain, film thickness and substrate were thoroughly investigated. In addition to these external factors, the effect of intrinsic defects on the magnetic properties of SFMO were also clarified. Secondly, the magnetoresistivity mechanims of SFMO films were studied and a semiempirical model of the temperature dependence of resistivity was introduced. The films were grown on single crystal substrates using a ceramic target made with sol-gel method. The structural characterization of the films were carried out with X-ray diffraction, atomic force microscopy, transmission electron microscopy and high kinetic energy photoelectron spectroscopy. The magnetic properties were measured with SQUID magnetometer and the magneto-transport properties by magnetometer with a resistivity option. SFMO films with the best combination of structural and magnetic properties were grown in Ar atmosphere at 1050 °C . Their magnetic properties could not be improved by the ex situ post-annealing treatments aside from the treatments in ultra-high vacuum conditions. The optimal film thickness was found to be around 150 nm and only small improvement in the magnetic properties with decreasing strain was observed. Instead, the magnetic properties were observed to be highly dependent on the choice of the substrate due to the lattice mismatch induced defects, which are best avoided by using the SrTiO3 substrate. The large difference in the Curie temperature and the saturation magnetization between the SFMO thin film and polycrystalline bulk samples was connected to the antisite disorder and oxygen vacancies. Thus, the Curie temperature of SFMO thin films could be improved by increasing the amount of oxygen vacancies for example with ultra-high vacuum treatments or improving the B-site ordering by further optimization of the deposition parameters. The magneto-transport properties of SFMO thin films do not follow any conventional models, but the temperature dependence of resistivity was succesfully described with a model of two spin channel system. Also, evidences that the resistivity-temperature behaviour of SFMO thin films is dominated by the structural defects, which reduce the band gap in the majority spin band were found. Moreover, the magnetic field response of the resistivity in SFMO thin films were found to be superposition of different mechanisms that seems to be related to the structural changes in the film.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Työn tarkoituksena oli kuparin ja hapon erottaminen toisistaan malliaineliuoksesta membraanitekniikalla. Kaivannaisteollisuudessa happoja käytetään metalleiden liuottamiseen. Lisäksi happamia jätevesiä syntyy sulfidikaivoksissa, sadeveden liuottaessa metalleja. Raskasmetallit ovat erittäin myrkyllistä vesieliöille. Työn tavoitteena oli saada happo ja metalli hyödynnettävään muotoon. Työn kokeellisessa osassa vertailtiin kahta polymeeristä ja keraamista membraania hapon ja metallin erotuksessa. Mittauksissa käytetyt membraanit olivat: AMS Technologies A-3012 ja A-3014 sekä Inopor ® Type SKR. Syöttöliuos sisälsi kuparisulfaattia ja rikkihappoa. Suodatukset tehtiin 30 ºC lämpötilassa useissa paineissa ja pH-arvoissa. Polymeeristen membraanien suodatusnäytteistä saadut retentiot kuparille olivat vastaavia aikaisempien tutkimusten tuloksien kanssa. A-3012 kalvon kuparin retentio oli 95 % ja A-3014 kalvolle kuparin retentio oli 90 %. Lisäksi mittausten korkeimmissa pH-arvoissa (2,9-2,3) happo konsentroitui permeaattiin. Polymeerisillä membraaneilla ei ollut merkkejä kalvon likaantumisesta tai hajoamisesta. Keraamisella membraanilla mitatut tulokset eivät olleet vastaavia aikaisempien tutkimusten tuloksien kanssa. Kuparin retentio olivat 2 ja 20 prosentin välillä, eikä liuoksen pH eronnut syötön ja permeaatin välillä. Tulosten perusteella molemmat tutkitut polymeeriset membraanit soveltuvat kuparin erottamiseen happamasta liuoksesta. Mittauksissa käytetty keraaminen membraani ei sovellu tähän tehtävään.