36 resultados para single server queue


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work emission, optical, electrical and magnetic properties of the d- and f- elements doped zinc selenide crystals were investigated within a wide temperature range. Doping was performed in various technological processes: during the growth by chemical vapor transport method; by thermal diffusion from the Bi or Zn melt. Concentration of the doping impurity in the crystals was controlled by amount of the dopant in the source material or by its concentration in the doping media. Special interest in the work was paid to the influence of the different concentrations of Cr and Yb impurities on ZnSe crystals’ properties, correlations between observed effects and similarities with the Ni, Mn and Gd dopants are analysed. Possibility of formation of the excitons bound to the doping d-ions was shown. In contrast to this, it was observed that f-elements do not bound excitons, but prevent formation of excitons bound to some uncontrolled impurities. A mechanism of Cr doping impurity interaction with background impurities and zinc selenide structural defects was proposed based on experimental data. An assumption about resonant energy transfer between double charged chromium ions and complexes based on crystals’ vacancy defects was made. A correlation between emission and magnetic properties of the d- ions doped samples was established. Based on this correlation a mechanism explaining the concentration quench of the emission was proposed. It was found that f-ions bind electrically active shallow and deep donor and acceptor states of background impurity to electrically neutral complexes. This may be observed as “purification” of ZnSe crystals by doping with the rare-earth elements, resulting i tendency of the properties of f-ion doped crystals to the properties of intrinsic crystals, but with smaller concentration of uncontrolled native and impurity defects. A possible interpretation of this effect was proposed. It was shown that selenium substituting impurities decrease efficiency of the Yb doping. Based on this experimental results an attempt to determine ytterbium ion surroundings in the crystal lattice was made. It was shown that co-doping of zinc selenide crystals with the d- and f- ions leads to the combination of the impurities influence on the material’s properties. On the basis of obtained data an interaction mechanism of the d- and f-elements co-dopants was proposed. Guided by the model of the ytterbium ion incorporation in the selenide sublattice of the ZnSe crystals, an assumption about stabilization of single charged chromium ions in the zinc sublattice crystal nodes, by means of formation of the local charge compensating clusters, was made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis introduces heat demand forecasting models which are generated by using data mining algorithms. The forecast spans one full day and this forecast can be used in regulating heat consumption of buildings. For training the data mining models, two years of heat consumption data from a case building and weather measurement data from Finnish Meteorological Institute are used. The thesis utilizes Microsoft SQL Server Analysis Services data mining tools in generating the data mining models and CRISP-DM process framework to implement the research. Results show that the built models can predict heat demand at best with mean average percentage errors of 3.8% for 24-h profile and 5.9% for full day. A deployment model for integrating the generated data mining models into an existing building energy management system is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the growth in new technologies, using online tools have become an everyday lifestyle. It has a greater impact on researchers as the data obtained from various experiments needs to be analyzed and knowledge of programming has become mandatory even for pure biologists. Hence, VTT came up with a new tool, R Executables (REX) which is a web application designed to provide a graphical interface for biological data functions like Image analysis, Gene expression data analysis, plotting, disease and control studies etc., which employs R functions to provide results. REX provides a user interactive application for the biologists to directly enter the values and run the required analysis with a single click. The program processes the given data in the background and prints results rapidly. Due to growth of data and load on server, the interface has gained problems concerning time consumption, poor GUI, data storage issues, security, minimal user interactive experience and crashes with large amount of data. This thesis handles the methods by which these problems were resolved and made REX a better application for the future. The old REX was developed using Python Django and now, a new programming language, Vaadin has been implemented. Vaadin is a Java framework for developing web applications and the programming language is extremely similar to Java with new rich components. Vaadin provides better security, better speed, good and interactive interface. In this thesis, subset functionalities of REX was selected which includes IST bulk plotting and image segmentation and implemented those using Vaadin. A code of 662 lines was programmed by me which included Vaadin as the front-end handler while R language was used for back-end data retrieval, computing and plotting. The application is optimized to allow further functionalities to be migrated with ease from old REX. Future development is focused on including Hight throughput screening functions along with gene expression database handling

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As reactive extraction grown more and more popular in a variety of technological applications, optimizing its performance becomes more and more important. The process of complex formation is affected by a great number of both physical and chemical properties of all the components involved, and sometimes their interference with one another makes improving the effectiveness of such processes very difficult. In this Master’s Theses, the processes of complex formation between the aqueous phase - represented by copper sulfate water solution, and organic phase – represented by Acorga M5640 solvent extractor, were studied in order to establish the effect these components have on reactive extraction performance and to determine which step is bottlenecking the process the most.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The future of paying in the age of digitalization is a topic that includes varied visions. This master’s thesis explores images of the future of paying in the Single Euro Payment Area (SEPA) up to 2020 and 2025 through the views of experts specialized in paying. This study was commissioned by a credit management company in order to obtain more detailed information about the future of paying. Specifically, this thesis investigates what could be the most used payment methods in the future, what items could work as a medium of exchange in 2020 and how will they evolve towards the year 2025. Changing consumer behavior, trends connected to payment methods, security and private issues of new cashless payment methods were also part of this study. In the empirical part of the study the experts’ ideas about probable and preferable future images of paying were investigated through a two-round Disaggregative Delphi method. The questionnaire included numeric statements and open questions. Three alternative future images were created with the help of cluster analysis: “Unsurprising Future”, “Technology Driven Future” and “The Age of the Customer”. The plausible images had similarities and differences, which were reflected to the previous studies in the literature review. The study’s findings were formed based on the images of futures’ similarities and to the open questions answers that were received from the questionnaire. The main conclusion of the study was that development of technology will unify and diversify SEPA; the trend in 2020 seems to be towards more cashless payment methods but their usage depends on the countries’ financial possibilities and customer preferences. Mobile payments, cards and cash will be the main payment methods but the banks will have competitors from outside the financial sector. Wearable payment methods and NFC technology are seen as widely growing trends but subcutaneous payment devices will likely keep their niche position until 2025. In the meantime, security and private issues are seen to increase because of identity thefts and various frauds. Simultaneously, privacy will lose its meaning to younger consumers who are used to sharing their transaction and personal data with third parties in order to get access to attractive services. Easier access to consumers’ transaction data will probably open the door for hackers and cause new risks in paying processes. There exist many roads to future, and this study was not an attempt to give any complete answers about it even if some plausible assumptions about the future’s course were provided.