39 resultados para polymeric nanomedicines
Resumo:
Effective processes to fractionate the main compounds in biomass, such as wood, are a prerequisite for an effective biorefinery. Water is environmentally friendly and widely used in industry, which makes it a potential solvent also for forest biomass. At elevated temperatures over 100 °C, water can readily hydrolyse and dissolve hemicelluloses from biomass. In this work, birch sawdust was extracted using pressurized hot water (PHWE) flow-through systems. The hypothesis of the work was that it is possible to obtain polymeric, water-soluble hemicelluloses from birch sawdust using flow-through PHW extractions at both laboratory and large scale. Different extraction temperatures in the range 140–200 °C were evaluated to see the effect of temperature to the xylan yield. The yields and extracted hemicelluloses were analysed to obtain sugar ratios, the amount of acetyl groups, furfurals and the xylan yields. Higher extraction temperatures increased the xylan yield, but decreased the molar mass of the dissolved xylan. As the extraction temperature increased, more acetic acid was released from the hemicelluloses, thus further decreasing the pH of the extract. There were only trace amounts of furfurals present after the extractions, indicating that the treatment was mild enough not to degrade the sugars further. The sawdust extraction density was increased by packing more sawdust in the laboratory scale extraction vessel. The aim was to obtain extracts with higher concentration than in typical extraction densities. The extraction times and water flow rates were kept constant during these extractions. The higher sawdust packing degree decreased the water use in the extractions and the extracts had higher hemicellulose concentrations than extractions with lower sawdust degrees of packing. The molar masses of the hemicelluloses were similar in higher packing degrees and in the degrees of packing that were used in typical PHWE flow-through extractions. The structure of extracted sawdust was investigated using small angle-(SAXS) and wide angle (WAXS) x-ray scattering. The cell wall topography of birch sawdust and extracted sawdust was compared using x-ray tomography. The results showed that the structure of the cell walls of extracted birch sawdust was preserved but the cell walls were thinner after the extractions. Larger pores were opened inside the fibres and cellulose microfibrils were more tightly packed after the extraction. Acetate buffers were used to control the pH of the extracts during the extractions. The pH control prevented excessive xylan hydrolysis and increased the molar masses of the extracted xylans. The yields of buffered extractions were lower than for plain water extractions at 160–170 °C, but at 180 °C yields were similar to those from plain water and pH buffers. The pH can thus be controlled during extraction with acetate buffer to obtain xylan with higher molar mass than those obtainable using plain water. Birch sawdust was extracted both in the laboratory and pilot scale. The performance of the PHWE flow-through system was evaluated in the laboratory and the pilot scale using vessels with the same shape but different volumes, with the same relative water flow through the sawdust bed, and in the same extraction temperature. Pre-steaming improved the extraction efficiency and the water flow through the sawdust bed. The extracted birch sawdust and the extracted xylan were similar in both laboratory and pilot scale. The PHWE system was successfully scaled up by a factor of 6000 from the laboratory to pilot scale and extractions performed equally well in both scales. The results show that a flow-through system can be further scaled up and used to extract water-soluble xylans from birch sawdust. Extracted xylans can be concentrated, purified, and then used in e.g. films and barriers, or as building blocks for novel material applications.
Resumo:
Laser additive manufacturing (LAM), known also as 3D printing, is a powder bed fusion (PBF) type of additive manufacturing (AM) technology used to manufacture metal parts layer by layer by assist of laser beam. The development of the technology from building just prototype parts to functional parts is due to design flexibility. And also possibility to manufacture tailored and optimised components in terms of performance and strength to weight ratio of final parts. The study of energy and raw material consumption in LAM is essential as it might facilitate the adoption and usage of the technique in manufacturing industries. The objective this thesis was find the impact of LAM on environmental and economic aspects and to conduct life cycle inventory of CNC machining and LAM in terms of energy and raw material consumption at production phases. Literature overview in this thesis include sustainability issues in manufacturing industries with focus on environmental and economic aspects. Also life cycle assessment and its applicability in manufacturing industry were studied. UPLCI-CO2PE! Initiative was identified as mostly applied exiting methodology to conduct LCI analysis in discrete manufacturing process like LAM. Many of the reviewed literature had focused to PBF of polymeric material and only few had considered metallic materials. The studies that had included metallic materials had only measured input and output energy or materials of the process and compared to different AM systems without comparing to any competitive process. Neither did any include effect of process variation when building metallic parts with LAM. Experimental testing were carried out to make dissimilar samples with CNC machining and LAM in this thesis. Test samples were designed to include part complexity and weight reductions. PUMA 2500Y lathe machine was used in the CNC machining whereas a modified research machine representing EOSINT M-series was used for the LAM. The raw material used for making the test pieces were stainless steel 316L bar (CNC machined parts) and stainless steel 316L powder (LAM built parts). An analysis of power, time, and the energy consumed in each of the manufacturing processes on production phase showed that LAM utilises more energy than CNC machining. The high energy consumption was as result of duration of production. Energy consumption profiles in CNC machining showed fluctuations with high and low power ranges. LAM energy usage within specific mode (standby, heating, process, sawing) remained relatively constant through the production. CNC machining was limited in terms of manufacturing freedom as it was not possible to manufacture all the designed sample by machining. And the one which was possible was aided with large amount of material removed as waste. Planning phase in LAM was shorter than in CNC machining as the latter required many preparation steps. Specific energy consumption (SEC) were estimated in LAM based on the practical results and assumed platform utilisation. The estimated platform utilisation showed SEC could reduce when more parts were placed in one build than it was in with the empirical results in this thesis (six parts).
Resumo:
Suurin osa alifaattisista karboksyylihapoista tuotetaan nykyään synteettisesti, mutta öljyn hinnan nousu ja ekologisempi ajattelutapa on aiheuttanut kiinnostusta tuottaa näitä karboksyyli- ja hydroksihappoja jatkossa fermentoimalla tai sellun valmistuksen sivuvirtana syntyvästä mustalipeästä. Nykyään mustalipeä poltetaan sellaisenaan soodakattiloissa keittokemikaalien regeneroimiseksi, energiaksi ja sähköksi. Jatkossa mustalipeästä voisi erottaa arvokkaat orgaaniset hapot ennen polttamista. Saadusta happoseoksesta tulisi erottaa yksittäiset alifaattiset karboksyylihapot toisistaan jatkojalostusta varten. Tämän kandidaatintyön tavoitteena oli selvittää, millä kromatografisella erotusmenetelmällä fermentointituotteina ja teollisuuden sivuvirtoina syntyvistä karboksyylihapposeoksista saadaan yksittäiset alifaattiset karboksyylihapot erotettua toisistaan. Mittaukset suoritettiin kolonnilla, jossa hartsipedin halkaisija oli 1,5 cm ja korkeus 15 cm. Kolonnin erototusmateriaaleina kokeiltiin vahvoja ja heikkoja kationinvaihtohartseja, vahvaa anioninvaihtohartsia ja polymeerisiä adsorbentteja. Erotettavaksi happoseokseksi valittiin sitruuna-, viini-, glykoli-, maito- ja etikkahapon seos. Tehokkain erotus saatiin Puroliten valmistamalla Macronet 270:lla, joka on mikrohuokoinen polymeerinen adsorbentti. Macronet 270:lla saatiin erotettua erityisesti viini- ja glykolihappo sitruuna-, maito- ja etikkahaposta. Yksittäisiä happoja ei saatu kuitenkaan kunnolla erotettua. Parhaat koeolosuhteet erotustehokkuuden ja retentioaikojen kannalta saatiin vesieluentin virtausnopeudella 2 mL/min, syöttöpulssin tilavuudella 5 mL ja kolonnin lämpötilassa 75 °C.
Resumo:
Sustainability and recycling are core values in today’s industrial operations. New materials, products and processes need to be designed in such a way as to consume fewer of the diminishing resources we have available and to put as little strain on the environment as possible. An integral part of this is cleaning and recycling. New processes are to be designed to improve the efficiency in this aspect. Wastewater, including municipal wastewaters, is treated in several steps including chemical and mechanical cleaning of waters. Well-cleaned water can be recycled and reused. Clean water for everyone is one of the greatest challenges we are facing today. Ferric sulphate, made by oxidation from ferrous sulphate, is used in water purification. The oxidation of ferrous sulphate, FeSO4, to ferric sulphate in acidic aqueous solutions of H2SO4 over finely dispersed active carbon particles was studied in a vigorously stirred batch reactor. Molecular oxygen was used as the oxidation agent and several catalysts were screened: active carbon, active carbon impregnated with Pt, Rh, Pd and Ru. Both active carbon and noble metal-active carbon catalysts enhanced the oxidation rate considerably. The order of the noble metals according to the effect was: Pt >> Rh > Pd, Ru. By the use of catalysts, the production capacities of existing oxidation units can be considerably increased. Good coagulants have a high charge on a long polymer chain effectively capturing dirty particles of the opposite charge. Analysis of the reaction product indicated that it is possible to obtain polymeric iron-based products with good coagulation properties. Systematic kinetic experiments were carried out at the temperature and pressure ranges of 60B100°C and 4B10 bar, respectively. The results revealed that both non-catalytic and catalytic oxidation of Fe2+ to Fe3+ take place simultaneously. The experimental data were fitted to rate equations, which were based on a plausible reaction mechanism: adsorption of dissolved oxygen on active carbon, electron transfer from Fe2+ ions to adsorbed oxygen and formation of surface hydroxyls. A comparison of the Fe2+ concentrations predicted by the kinetic model with the experimentally observed concentrations indicated that the mechanistic rate equations were able to describe the intrinsic oxidation kinetics of Fe2+ over active carbon and active carbon-noble metal catalysts. Engineering aspects were closely considered and effort was directed to utilizing existing equipment in the production of the new coagulant. Ferrous sulphate can be catalytically oxidized to produce a novel long-chained polymeric iron-based flocculent in an easy and affordable way in existing facilities. The results can be used for modelling the reactors and for scale-up. Ferric iron (Fe3+) was successfully applied for the dissolution of sphalerite. Sphalerite contains indium, gallium and germanium, among others, and the application can promote their recovery. The understanding of the reduction process of ferric to ferrous iron can be used to develop further the understanding of the dissolution mechanisms and oxidation of ferrous sulphate. Indium, gallium and germanium face an ever-increasing demand in the electronics industry, among others. The supply is, however, very limited. The fact that most part of the material is obtained through secondary production means that real production quota depends on the primary material production. This also sets the pricing. The primary production material is in most cases zinc and aluminium. Recycling of scrap material and the utilization of industrial waste, containing indium, gallium and geranium, is a necessity without real options. As a part of this study plausible methods for the recovery of indium, gallium and germanium have been studied. The results were encouraging and provided information about the precipitation of these valuables from highly acidic solutions. Indium and gallium were separated from acidic sulphuric acid solutions by precipitation with basic sulphates such as alunite or they were precipitated as basic sulphates of their own as galliunite and indiunite. Germanium may precipitate as a basic sulphate of a mixed composition. The precipitation is rapid and the selectivity is good. When the solutions contain both indium and gallium then the results show that gallium should be separated before indium to achieve a better selectivity. Germanium was separated from highly acidic sulphuric acid solutions containing other metals as well by precipitating with tannic acid. This is a highly selective method. According to the study other commonly found metals in the solution do not affect germanium precipitation. The reduction of ferric iron to ferrous, the precipitation of indium, gallium and germanium, and the dissolution of the raw materials are strongly depending on temperature and pH. The temperature and pH effect were studied and which contributed to the understanding and design of the different process steps. Increased temperature and reduced pH improve the reduction rate. Finally, the gained understanding in the studied areas can be employed to develop better industrial processes not only on a large scale but also increasingly on a smaller scale. The small amounts of indium, gallium and germanium may favour smaller and more locally bound recovery.
Resumo:
The increasing use of energy, food, and materials by the growing population in the world is leading to the situation where alternative solutions from renewable carbon resources are sought after. The growing use of plastics depends on the raw-oil production while oil refining are politically governed and required for the polymer manufacturing is not sustainable in terms of carbon footprint. The amount of packaging is also increasing. Packaging is not only utilising cardboard and paper, but also plastics. The synthetic petroleum-derived plastics and inner-coatings in food packaging can be substituted with polymeric material from the renewable resources. The trees in Finnish forests constitute a huge resource, which ought to be utilised more effectively than it is today. One underutilised component of the forests is the wood-derived hemicelluloses, although Spruce Oacetyl-galactoglucomannans (GGMs) have previously shown high potential for material applications and can be recovered in large scale. Hemicelluloses are hydrophilic in their native state, which restrains the use of them for food packaging as non-dry item. To cope with this challenge, we intended to make GGMs more hydrophobic or amphiphilic by chemical grafting and consequently with the focus of using them for barrier applications. Methods of esterification with anhydrides and cationic etherification with a trimethyl ammonium moiety were established. A method of controlled synthesis to obtain the desired properties by the means of altering temperature, reaction time, the quantity of the reagent, and even the solvent for purification of the products was developed. Numerous analytical tools, such as NMR, FTIR, SEC-MALLS/RI, MALDI-TOF-MS, RP-HPLC and polyelectrolyte titration were used to evaluate the products from different perspectives and to acquire parallel proofs of their chemical structure. Modified GGMs with different degree of substitution and the correlating level of hydrophobicity was applied as coatings on cartonboard and on nanofibrillated cellulose-GGM films to exhibit barrier functionality. The water dispersibility in processing was maintained with GGM esters with low DS. The use of chemically functionalised GGM was evaluated for the use as barriers against water, oxygen and grease for the food packaging purposes. The results show undoubtedly that GGM derivatives exhibit high potential to function as a barrier material in food packaging.
Resumo:
Building Integrated Photovoltaics (BIPV) are considered as the future of photovoltaic (PV) technology. The advantage of BIPV system is its multi-functionality; they fulfil the functions of a building envelope with the added benefit of generating power by replacing the traditional roofing and façade materials with PV that generate power. In this thesis, different types of PV cells and modules have been described in detail with their efficiencies and usage trends in the last decade. The different BIPV products for roof and façade are discussed in detail giving several examples. The electricity generation potential of BIPV in selected countries is compared with their actual electricity consumption. Further, the avoided greenhouse gas (GHG) emissions associated with electricity generation from traditional sources and transportation and distribution (T&D) losses are calculated. The results illustrate huge savings in GHGs. In BIPV different types of façade and backsheets are used. In this thesis, selected backsheets and façade were characterized in terms of their surface structure identification using infrared spectroscopy (FTIR-ATR), scanning electron microscopy with energy dispersive X-ray (SEM-EDX) and physical characterization using surface energy measurements. By using FTIR-ATR, surface polymeric materials were identified and with SEM-EDX, identification of the surface elements was possible. Surface energy measurements were useful in finding the adhesives and knowing the surface energies of the various backsheets and façade. The strength of adhesion between the facade and backsheets was studied using peel test. Four different types of adhesives were used to study the fracture pattern and peel tests values to identify the most suitable adhesive. It was found out that pretreatment increased the adhesive strength significantly.
Resumo:
Työn tarkoituksena oli kuparin ja hapon erottaminen toisistaan malliaineliuoksesta membraanitekniikalla. Kaivannaisteollisuudessa happoja käytetään metalleiden liuottamiseen. Lisäksi happamia jätevesiä syntyy sulfidikaivoksissa, sadeveden liuottaessa metalleja. Raskasmetallit ovat erittäin myrkyllistä vesieliöille. Työn tavoitteena oli saada happo ja metalli hyödynnettävään muotoon. Työn kokeellisessa osassa vertailtiin kahta polymeeristä ja keraamista membraania hapon ja metallin erotuksessa. Mittauksissa käytetyt membraanit olivat: AMS Technologies A-3012 ja A-3014 sekä Inopor ® Type SKR. Syöttöliuos sisälsi kuparisulfaattia ja rikkihappoa. Suodatukset tehtiin 30 ºC lämpötilassa useissa paineissa ja pH-arvoissa. Polymeeristen membraanien suodatusnäytteistä saadut retentiot kuparille olivat vastaavia aikaisempien tutkimusten tuloksien kanssa. A-3012 kalvon kuparin retentio oli 95 % ja A-3014 kalvolle kuparin retentio oli 90 %. Lisäksi mittausten korkeimmissa pH-arvoissa (2,9-2,3) happo konsentroitui permeaattiin. Polymeerisillä membraaneilla ei ollut merkkejä kalvon likaantumisesta tai hajoamisesta. Keraamisella membraanilla mitatut tulokset eivät olleet vastaavia aikaisempien tutkimusten tuloksien kanssa. Kuparin retentio olivat 2 ja 20 prosentin välillä, eikä liuoksen pH eronnut syötön ja permeaatin välillä. Tulosten perusteella molemmat tutkitut polymeeriset membraanit soveltuvat kuparin erottamiseen happamasta liuoksesta. Mittauksissa käytetty keraaminen membraani ei sovellu tähän tehtävään.
Resumo:
For advanced devices in the application fields of data storage, solar cell and biosensing, one of the major challenges to achieve high efficiency is the fabrication of nanopatterned metal oxide surfaces. Such surfaces often require both precise structure at the nanometer scale and controllable patterned structure at the macro scale. Nowadays, the dominating candidates to fabricate nanopatterned surfaces are the lithographic technique and block-copolymer masks, most of which are unfortunately costly and inefficient. An alternative bottom-up approach, which involves organic/inorganic self-assembly and dip-coating deposition, has been studied intensively in recent years and has proven to be an effective technique for the fabrication of nanoperforated metal oxide thin films. The overall objective of this work was to optimize the synthesis conditions of nanoperforated TiO2 (NP-TiO2) thin films, especially to be compatible with mixed metal oxide systems. Another goal was to develop fabrication and processing of NP-TiO2 thin films towards largescale production and seek new applications for solar cells and biosensing. Besides the traditional dip-coating and drop-casting methods, inkjet printing was used to prepare thin films of metal oxides, with the advantage of depositing the ink onto target areas, further enabling cost-effective fabrication of micro-patterned nanoperforated metal oxide thin films. The films were characterized by water contact angle determination, Atomic Force Microscopy, Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Grazing Incidence XRay Diffraction. In this study, well-ordered zinc titanate nanoperforated thin films with different Zn/Ti ratios were produced successfully with zinc precursor content up to 50 mol%, and the dominating phase was Zn2Ti3O8. NP-TiO2 structures were also obtained by a cost-efficient means, namely inkjet printing, at both ambient temperature and 60 °C. To further explore new biosensing applications of nanoperforated oxide thin films, inkjet printing was used for the fabrication of both continuous and patterned polymeric films onto NP-TiO2 and perfluorinated phosphate functionalized NP-TiO2 substrates, respectively. The NP-TiO2 films can be also functionalized with a fluoroalkylsilane, resulting in hydrophobic surfaces on both titania and silica. The surface energy contrast in the nanoperforations can be tuned by irradiating the films with UV light, which provides ideal model systems for wettability studies.
Resumo:
Electrochromism, the phenomenon of reversible color change induced by a small electric charge, forms the basis for operation of several devices including mirrors, displays and smart windows. Although, the history of electrochromism dates back to the 19th century, only the last quarter of the 20th century has its considerable scientific and technological impact. The commercial applications of electrochromics (ECs) are rather limited, besides top selling EC anti-glare mirrors by Gentex Corporation and airplane windows by Boeing, which made a huge commercial success and exposed the potential of EC materials for future glass industry. It is evident from their patents that viologens (salts of 4,4ʹ-bipyridilium) were the major active EC component for most of these marketed devices, signifying the motivation of this thesis focusing on EC viologens. Among the family of electrochromes, viologens have been utilized in electrochromic devices (ECDs) for a while, due to its intensely colored radical cation formation induced by applying a small cathodic potential. Viologens can be synthesized as oligomer or in the polymeric form or as functionality to conjugated polymers. In this thesis, polyviologens (PVs) were synthesized starting from cyanopyridinium (CNP) based monomer precursors. Reductive coupling of cross-connected cyano groups yields viologen and polyviologen under successive electropolymerization using for example the cyclic voltammetry (CV) technique. For further development, a polyviologen-graphene composite system was fabricated, focusing at the stability of the PV electrochrome without sacrificing its excellent EC properties. High electrical conductivity, high surface area offered by graphene sheets together with its non-covalent interactions and synergism with PV significantly improved the electrochrome durability in the composite matrix. The work thereby continued in developing a CNP functionalized thiophene derivative and its copolymer for possible utilization of viologen in the copolymer blend. Furthermore, the viologen functionalized thiophene derivative was synthesized and electropolymerized in order to explore enhancement in the EC contrast and overall EC performance. The findings suggest that such electroactive viologen/polyviologen systems and their nanostructured composite films as well as viologen functionalized conjugated polymers, can be potentially applied as an active EC material in future ECDs aiming at durable device performances.