38 resultados para joint terminal attack controller
Resumo:
The aim of this work was to calibrate the material properties including strength and strain values for different material zones of ultra-high strength steel (UHSS) welded joints under monotonic static loading. The UHSS is heat sensitive and softens by heat due to welding, the affected zone is heat affected zone (HAZ). In this regard, cylindrical specimens were cut out from welded joints of Strenx® 960 MC and Strenx® Tube 960 MH, were examined by tensile test. The hardness values of specimens’ cross section were measured. Using correlations between hardness and strength, initial material properties were obtained. The same size specimen with different zones of material same as real specimen were created and defined in finite element method (FEM) software with commercial brand Abaqus 6.14-1. The loading and boundary conditions were defined considering tensile test values. Using initial material properties made of hardness-strength correlations (true stress-strain values) as Abaqus main input, FEM is utilized to simulate the tensile test process. By comparing FEM Abaqus results with measured results of tensile test, initial material properties will be revised and reused as software input to be fully calibrated in such a way that FEM results and tensile test results deviate minimum. Two type of different S960 were used including 960 MC plates, and structural hollow section 960 MH X-joint. The joint is welded by BöhlerTM X96 filler material. In welded joints, typically the following zones appear: Weld (WEL), Heat affected zone (HAZ) coarse grained (HCG) and fine grained (HFG), annealed zone, and base material (BaM). Results showed that: The HAZ zone is softened due to heat input while welding. For all the specimens, the softened zone’s strength is decreased and makes it a weakest zone where fracture happens while loading. Stress concentration of a notched specimen can represent the properties of notched zone. The load-displacement diagram from FEM modeling matches with the experiments by the calibrated material properties by compromising two correlations of hardness and strength.
Resumo:
The construction of offshore structures, equipment and devices requires a high level of mechanical reliability in terms of strength, toughness and ductility. One major site for mechanical failure, the weld joint region, needs particularly careful examination, and weld joint quality has become a major focus of research in recent times. Underwater welding carried out offshore faces specific challenges affecting the mechanical reliability of constructions completed underwater. The focus of this thesis is on improvement of weld quality of underwater welding using control theory. This research work identifies ways of optimizing the welding process parameters of flux cored arc welding (FCAW) during underwater welding so as to achieve desired weld bead geometry when welding in a water environment. The weld bead geometry has no known linear relationship with the welding process parameters, which makes it difficult to determine a satisfactory weld quality. However, good weld bead geometry is achievable by controlling the welding process parameters. The doctoral dissertation comprises two sections. The first part introduces the topic of the research, discusses the mechanisms of underwater welding and examines the effect of the water environment on the weld quality of wet welding. The second part comprises four research papers examining different aspects of underwater wet welding and its control and optimization. Issues considered include the effects of welding process parameters on weld bead geometry, optimization of FCAW process parameters, and design of a control system for the purpose of achieving a desired bead geometry that can ensure a high level of mechanical reliability in welded joints of offshore structures. Artificial neural network systems and a fuzzy logic controller, which are incorporated in the control system design, and a hybrid of fuzzy and PID controllers are the major control dynamics used. This study contributes to knowledge of possible solutions for achieving similar high weld quality in underwater wet welding as found with welding in air. The study shows that carefully selected steels with very low carbon equivalent and proper control of the welding process parameters are essential in achieving good weld quality. The study provides a platform for further research in underwater welding. It promotes increased awareness of the need to improve the quality of underwater welding for offshore industries and thus minimize the risk of structural defects resulting from poor weld quality.
Resumo:
The investments have always been considered as an essential backbone and so-called ‘locomotive’ for the competitive economies. However, in various countries, the state has been put under tight budget constraints for the investments in capital intensive projects. In response to this situation, the cooperation between public and private sector has grown based on public-private mechanism. The promotion of favorable arrangement for collaboration between public and private sectors for the provision of policies, services, and infrastructure in Russia can help to address the problems of dry ports development that neither municipalities nor the private sector can solve alone. Especially, the stimulation of public-private collaboration is significant under the exposure to externalities that affect the magnitude of the risks during all phases of project realization. In these circumstances, the risk in the projects also is becoming increasingly a part of joint research and risk management practice, which is viewed as a key approach, aiming to take active actions on existing global and specific factors of uncertainties. Meanwhile, a relatively little progress has been made on the inclusion of the resilience aspects into the planning process of a dry ports construction that would instruct the capacity planner, on how to mitigate the occurrence of disruptions that may lead to million dollars of losses due to the deviation of the future cash flows from the expected financial flows on the project. The current experience shows that the existing methodological base is developed fragmentary within separate steps of supply chain risk management (SCRM) processes: risk identification, risk evaluation, risk mitigation, risk monitoring and control phases. The lack of the systematic approach hinders the solution of the problem of risk management processes of dry port implementation. Therefore, management of various risks during the investments phases of dry port projects still presents a considerable challenge from the practical and theoretical points of view. In this regard, the given research became a logical continuation of fundamental research, existing in the financial models and theories (e.g., capital asset pricing model and real option theory), as well as provided a complementation for the portfolio theory. The goal of the current study is in the design of methods and models for the facilitation of dry port implementation through the mechanism of public-private partnership on the national market that implies the necessity to mitigate, first and foremost, the shortage of the investments and consequences of risks. The problem of the research was formulated on the ground of the identified contradictions. They rose as a continuation of the trade-off between the opportunities that the investors can gain from the development of terminal business in Russia (i.e. dry port implementation) and risks. As a rule, the higher the investment risk, the greater should be their expected return. However, investors have a different tolerance for the risks. That is why it would be advisable to find an optimum investment. In the given study, the optimum relates to the search for the efficient portfolio, which can provide satisfaction to the investor, depending on its degree of risk aversion. There are many theories and methods in finance, concerning investment choices. Nevertheless, the appropriateness and effectiveness of particular methods should be considered with the allowance of the specifics of the investment projects. For example, the investments in dry ports imply not only the lump sum of financial inflows, but also the long-term payback periods. As a result, capital intensity and longevity of their construction determine the necessity from investors to ensure the return on investment (profitability), along with the rapid return on investment (liquidity), without precluding the fact that the stochastic nature of the project environment is hardly described by the formula-based approach. The current theoretical base for the economic appraisals of the dry port projects more often perceives net present value (NPV) as a technique superior to other decision-making criteria. For example, the portfolio theory, which considers different risk preference of an investor and structures of utility, defines net present value as a better criterion of project appraisal than discounted payback period (DPP). Meanwhile, in business practice, the DPP is more popular. Knowing that the NPV is based on the assumptions of certainty of project life, it cannot be an accurate appraisal approach alone to determine whether or not the project should be accepted for the approval in the environment that is not without of uncertainties. In order to reflect the period or the project’s useful life that is exposed to risks due to changes in political, operational, and financial factors, the second capital budgeting criterion – discounted payback period is profoundly important, particularly for the Russian environment. Those statements represent contradictions that exist in the theory and practice of the applied science. Therefore, it would be desirable to relax the assumptions of portfolio theory and regard DPP as not fewer relevant appraisal approach for the assessment of the investment and risk measure. At the same time, the rationality of the use of both project performance criteria depends on the methods and models, with the help of which these appraisal approaches are calculated in feasibility studies. The deterministic methods cannot ensure the required precision of the results, while the stochastic models guarantee the sufficient level of the accuracy and reliability of the obtained results, providing that the risks are properly identified, evaluated, and mitigated. Otherwise, the project performance indicators may not be confirmed during the phase of project realization. For instance, the economic and political instability can result in the undoing of hard-earned gains, leading to the need for the attraction of the additional finances for the project. The sources of the alternative investments, as well as supportive mitigation strategies, can be studied during the initial phases of project development. During this period, the effectiveness of the investments undertakings can also be improved by the inclusion of the various investors, e.g. Russian Railways’ enterprises and other private companies in the dry port projects. However, the evaluation of the effectiveness of the participation of different investors in the project lack the methods and models that would permit doing the particular feasibility study, foreseeing the quantitative characteristics of risks and their mitigation strategies, which can meet the tolerance of the investors to the risks. For this reason, the research proposes a combination of Monte Carlo method, discounted cash flow technique, the theory of real options, and portfolio theory via a system dynamics simulation approach. The use of this methodology allows for comprehensive risk management process of dry port development to cover all aspects of risk identification, risk evaluation, risk mitigation, risk monitoring, and control phases. A designed system dynamics model can be recommended for the decision-makers on the dry port projects that are financed via a public-private partnership. It permits investors to make a decision appraisal based on random variables of net present value and discounted payback period, depending on different risks factors, e.g. revenue risks, land acquisition risks, traffic volume risks, construction hazards, and political risks. In this case, the statistical mean is used for the explication of the expected value of the DPP and NPV; the standard deviation is proposed as a characteristic of risks, while the elasticity coefficient is applied for rating of risks. Additionally, the risk of failure of project investments and guaranteed recoupment of capital investment can be considered with the help of the model. On the whole, the application of these modern methods of simulation creates preconditions for the controlling of the process of dry port development, i.e. making managerial changes and identifying the most stable parameters that contribute to the optimal alternative scenarios of the project realization in the uncertain environment. System dynamics model allows analyzing the interactions in the most complex mechanism of risk management process of the dry ports development and making proposals for the improvement of the effectiveness of the investments via an estimation of different risk management strategies. For the comparison and ranking of these alternatives in their order of preference to the investor, the proposed indicators of the efficiency of the investments, concerning the NPV, DPP, and coefficient of variation, can be used. Thus, rational investors, who averse to taking increased risks unless they are compensated by the commensurate increase in the expected utility of a risky prospect of dry port development, can be guided by the deduced marginal utility of investments. It is computed on the ground of the results from the system dynamics model. In conclusion, the outlined theoretical and practical implications for the management of risks, which are the key characteristics of public-private partnerships, can help analysts and planning managers in budget decision-making, substantially alleviating the effect from various risks and avoiding unnecessary cost overruns in dry port projects.
Resumo:
Modern automobiles are no longer just mechanical tools. The electronics and computing services they are shipping with are making them not less than a computer. They are massive kinetic devices with sophisticated computing power. Most of the modern vehicles are made with the added connectivity in mind which may be vulnerable to outside attack. Researchers have shown that it is possible to infiltrate into a vehicle’s internal system remotely and control the physical entities such as steering and brakes. It is quite possible to experience such attacks on a moving vehicle and unable to use the controls. These massive connected computers can be life threatening as they are related to everyday lifestyle. First part of this research studied the attack surfaces in the automotive cybersecurity domain. It also illustrated the attack methods and capabilities of the damages. Online survey has been deployed as data collection tool to learn about the consumers’ usage of such vulnerable automotive services. The second part of the research portrayed the consumers’ privacy in automotive world. It has been found that almost hundred percent of modern vehicles has the capabilities to send vehicle diagnostic data as well as user generated data to their manufacturers, and almost thirty five percent automotive companies are collecting them already. Internet privacy has been studies before in many related domain but no privacy scale were matched for automotive consumers. It created the research gap and motivation for this thesis. A study has been performed to use well established consumers privacy scale – IUIPC to match with the automotive consumers’ privacy situation. Hypotheses were developed based on the IUIPC model for internet consumers’ privacy and they were studied by the finding from the data collection methods. Based on the key findings of the research, all the hypotheses were accepted and hence it is found that automotive consumers’ privacy did follow the IUIPC model under certain conditions. It is also found that a majority of automotive consumers use the services and devices that are vulnerable and prone to cyber-attacks. It is also established that there is a market for automotive cybersecurity services and consumers are willing to pay certain fees to avail that.
Resumo:
This study discusses the formation phase of Chinese-Finnish joint ventures in China. The purpose of this thesis is to create best practices for Finnish software companies in forming a joint venture with a local Chinese company in China. Therefore, the main research question, in what are the best practices for forming Sino-Finnish joint ventures in China for Finnish software firms, is examined through four different themes within the joint venture formation phase; the motives, the partner se-lection, the choice of a joint venture type and joint venture negotiations. The theoretical background of the study consists of literature relating to the establishment process of Sino-Western joint ventures in China. The empirical research conducted for this study is based on the expert interviews. The empirical data was gathered via nine semi-structured interviews with both Chinese and Finnish experts in software and technology industry, who have experience or knowledge in establishing Sino-Finnish joint ventures in China. Thematic analysis was used to cat-egorize and interpret the interview data. In addition, a thematic network was built to act as a basis of the analysis. According to the main findings, the main motives for Finnish software companies to establish a joint venture in China are lack of skills or experience, little resources to enter on their own, and China’s large market. The main motives for Chinese companies are to gain new technology or man-agerial skills, and expand internationally. The intellectual property rights (IPR) have recently im-proved a lot in China, but the Finnish companies’ knowledge on IPR is inadequate. The Finnish software companies should conduct a market and industry research in order to understand their po-sition in the market and to find a suitable location and potential joint venture partners. It is essential to define partner selection criteria and partner attributes. In addition, it is important to build the joint venture around complementary motives and a win-win situation between the joint venture partners. The Finnish companies should be prepared that the joint venture negotiations will be challenging and they will take a long time. The challenges can be overcome by gaining understanding about the Chinese culture and business environment. The findings of this study enhance understanding of the joint venture formation phase in China. This study provides guidelines for Finnish software companies to establish a joint venture in China. In addition, this study brings new insights to the Sino-Western joint venture literature with its soft-ware industry context. Future research is, however, necessary in order to gain an understanding of the advantages and disadvantages of a joint venture as an entry mode into China for Finnish soft-ware companies.