48 resultados para hybrid concepts
Resumo:
This master’s thesis mainly focuses on the design requirements of an Electric drive for Hybrid car application and its control strategy to achieve a wide speed range. It also emphasises how the control and performance requirements are transformed into its design variables. A parallel hybrid topology is considered where an IC engine and an electric drive share a common crank shaft. A permanent magnet synchronous machine (PMSM) is used as an electric drive machine. Performance requirements are converted into Machine design variables using the vector model of PMSM. Main dimensions of the machine are arrived using analytical approach and Finite Element Analysis (FEA) is used to verify the design and performance. Vector control algorithm was used to control the machine. The control algorithm was tested in a low power PMSM using an embedded controller. A prototype of 10 kW PMSM was built according to the design values. The prototype was tested in the laboratory using a high power converter. Tests were carried out to verify different operating modes. The results were in agreement with the calculations.
Resumo:
Esitetyn tutkimuksen tavoite on selvittää yksinkertaisen sähköajoneuvosimulaation avulla sähkökäyttösimulaation ja mekaniikkasimulaation välisen ohjelmallisen rajapinnan toimivuutta ja samalla toteuttaa LUT Energian hybridilaboratorion ensimmäinen rajapintaa hyödyntävä sähkökäytön ja mekaniikan yhdistelmäsimulaatio. Tutkimus on osa Lappeenrannan teknillisen yliopiston hybridikäyttötutkimusta, jossa muun muassa virtuaalisimuloinnin ja in-loop –simulaatioiden avulla tutkitaan raskaiden työkoneiden hybridisoinnin vaikutuksia esimerkiksi niiden suorituskykyyn, energiatehokkuuteen ja käytettävyyteen. Tulokset osoittavat mainitun rajapinnan toimivuuden, mikä mahdollistaa tutkimuksen etenemisen. Lisäksi raportti selvittää virtuaalisimuloinnin keskeisiä käsitteitä (virtual prototyping, hardware-in-the-loop sekä human-in-the-loop –simulointi).
Resumo:
To obtain the desirable accuracy of a robot, there are two techniques available. The first option would be to make the robot match the nominal mathematic model. In other words, the manufacturing and assembling tolerances of every part would be extremely tight so that all of the various parameters would match the “design” or “nominal” values as closely as possible. This method can satisfy most of the accuracy requirements, but the cost would increase dramatically as the accuracy requirement increases. Alternatively, a more cost-effective solution is to build a manipulator with relaxed manufacturing and assembling tolerances. By modifying the mathematical model in the controller, the actual errors of the robot can be compensated. This is the essence of robot calibration. Simply put, robot calibration is the process of defining an appropriate error model and then identifying the various parameter errors that make the error model match the robot as closely as possible. This work focuses on kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial-parallel hybrid robot. The robot consists of a 4-DOF serial mechanism and a 6-DOF hexapod parallel manipulator. The redundant 4-DOF serial structure is used to enlarge workspace and the 6-DOF hexapod manipulator is used to provide high load capabilities and stiffness for the whole structure. The main objective of the study is to develop a suitable calibration method to improve the accuracy of the redundant serial-parallel hybrid robot. To this end, a Denavit–Hartenberg (DH) hybrid error model and a Product-of-Exponential (POE) error model are developed for error modeling of the proposed robot. Furthermore, two kinds of global optimization methods, i.e. the differential-evolution (DE) algorithm and the Markov Chain Monte Carlo (MCMC) algorithm, are employed to identify the parameter errors of the derived error model. A measurement method based on a 3-2-1 wire-based pose estimation system is proposed and implemented in a Solidworks environment to simulate the real experimental validations. Numerical simulations and Solidworks prototype-model validations are carried out on the hybrid robot to verify the effectiveness, accuracy and robustness of the calibration algorithms.
Resumo:
Lanthanides represent the chemical elements from lanthanum to lutetium. They intrinsically exhibit some very exciting photophysical properties, which can be further enhanced by incorporating the lanthanide ion into organic or inorganic sensitizing structures. A very popular approach is to conjugate the lanthanide ion to an organic chromophore structure forming lanthanide chelates. Another approach, which has quickly gained interest, is to incorporate the lanthanide ions into nanoparticle structures, thus attaining improved specific activity and binding capacity. The lanthanide-based reporters usually express strong luminescence emission, multiple narrow emission lines covering a wide wavelength range, and exceptionally long excited state lifetimes enabling timeresolved detection. Because of these properties, the lanthanide-based reporters have found widespread applications in various fields of life. This study focuses on the field of bioanalytical applications. The aim of the study was to demonstrate the utility of different lanthanide-based reporters in homogeneous Förster resonance energy transfer (FRET)-based bioaffinity assays. Several different model assays were constructed. One was a competitive bioaffinity assay that utilized energy transfer from lanthanide chelate donors to fluorescent protein acceptors. In addition to the conventional FRET phenomenon, a recently discovered non-overlapping FRET (nFRET) phenomenon was demonstrated for the first time for fluorescent proteins. The lack of spectral overlap in the nFRET mechanism provides sensitivity and versatility to energy transfer-based assays. The distance and temperature dependence of these phenomena were further studied in a DNA-hybridization assay. The distance dependence of nFRET deviated from that of FRET, and unlike FRET, nFRET demonstrated clear temperature dependence. Based on these results, a possible excitation mechanism operating in nFRET was proposed. In the study, two enzyme activity assays for caspase-3 were also constructed. One of these was a fluorescence quenching-based enzyme activity assay that utilized novel inorganic particulate reporters called upconverting phosphors (UCPs) as donors. The use of UCPs enabled the construction of a simple, rather inexpensive, and easily automated assay format that had a high throughput rate. The other enzyme activity assay took advantage of another novel reporter class, the lanthanidebinding peptides (LBPs). In this assay, energy was transferred from a LBP to a green fluorescent protein (GFP). Using the LBPs it was possible to avoid the rather laborious, often poorly repeatable, and randomly positioned chemical labeling. In most of the constructed assays, time-resolved detection was used to eliminate the interfering background signal caused by autofluorescence. The improved signal-to-background ratios resulted in increased assay sensitivity, often unobtainable in homogeneous assay formats using conventional organic fluorophores. The anti-Stokes luminescence of the UCPs, however, enabled the elimination of autofluorescence even without time-gating, thus simplifying the instrument setup. Together, the studied reporters and assay formats pave the way for increasingly sensitive, simple, and easily automated bioanalytical applications.
Resumo:
Työssä tutkitaan raskaiden työkoneiden hybridisointimitoitusta simuloimalla. Työssä esitetään simulation-in-the-loop-simulointiin perustuva järjestelmä, jolla esimerkkitapauksena oleva kaivoslastauskone työympäristöineen voidaan mallintaa mekaaniselta osaltaan monikappaledynamiikkaan perustuvalla ohjelmistolla ja hybridijärjestelmän osalta Simulinkissa. Yhdistetty simulointi mahdollistaa hybridityökoneen virtuaalimallin ohjaamisen käyttäjän toimesta reaaliajassa. Simuloinnista saadaan tuloksena mm. työsykli, jota voidaan käyttää hybridisointimitoitukseen. Hybridisointi toteutetaan kahdella erilaisella kokoonpanolla, joista analysoidaan suorituskykyä sekä polttoaineen kulutusta. Tuloksia verrataan pelkästään dieselmoottoria voimanlähteenä käyttävään lastauskoneeseen. Työssä tehty tutkimus osoittaa, että (sarja-) hybridisoinnilla voidaan saavuttaa merkittäviä etuja raskaiden työkoneiden polttoainetehokkuudessa. Dieselmoottoria voidaan ajaa sellaisessa staattisessa toimintapisteessä, jonka hyötysuhde on korkea riippumatta työkoneen kuormituksesta. Saavutettu hyöty on toteutetussa tutkimuksessa parhaimmillaan jopa 56 % vähennys polttoaineenkulutuksessa. Lisäksi tarvittava dieselin nimellisteho pienenee huomattavasti. Tutkimuksen osana esitellään myös Hardware-in-the-Loop -laitteisto, jonka avulla voidaan liittää oikea sähkömoottori ja taajuudenmuuttaja osaksi virtuaalisesti simuloitua työkonetta.
Resumo:
Joining processes and techniques need to meet the trend of new applications and the development of new materials. The application in connection with thick and thin plates in industrial fields is wide and the joining technology is in very urgent need. The laser-TIG hybrid welding technology can play the respective advantages of both of them. One major advantage of the hybrid laser-TIG welding technology is its efficient use of laser energy. Additionally, it can develop into a high and new advanced welding technology and become a hot spot in both the application and research area. This thesis investigated laser –TIG hybrid welding with the aim of enlightening the reader on its advantages, disadvantages and future areas of improvement. The main objective is to investigate laser-TIG hybrid on the welding of various metals (steels, magnesium, aluminium etc.). In addition, it elaborates on various possible combinations on hybrid laser-TIG welding technology and their benefits. The possibility of using laser-TIG hybrid in welding of thick materials was investigated. The method applied in carrying out this research is by using literature review. The results showed that hybrid laser-TIG is applicable to almost all weldable metals. Also it proves to be effective in welding refractive metals. The possibility of welding with or without filler materials is of economic advantage especially in welding of materials with no filler material. Thick plate’s hybrid laser-TIG welding is showing great prospects although it normally finds its used in welding thin materials in the range of 0.4 to 0.8 mm. The findings show that laser-TIG hybrid welding can be a versatile welding process and therefore will be increasingly used industrially due to its numerous advantages and the development of new TIG arc that enhances its capabilities.
Resumo:
The experiences of the United States Armed Forces of the wars in Iraq and Afghanistan and Israel Defense Forces in the Second Lebanon War resulted a new term to surface called “hybrid warfare”. It was to describe the complexity of today’s battlefield. The term “hy-brid warfare” was never officially defined nor is it today. The updated version of the US ARMY Field Manual 3-0: Operations (Change 1) from February 22, 2011, introduced and defined “hybrid threat” and thus opened the discussion for hybrid adversary. In this thesis a model is introduced according to which any organization, group or an ad-versary can be examined and evaluated to see whether it qualifies as a hybrid adversary. It is demonstrated by the example of Hezbollah, which is recognized as the best example of an organization utilizing “hybrid warfare” and subsequently categorizing as a hybrid adver-sary. The model will be tested with Afghan Taliban to see whether both the model works and Taliban qualifies as a hybrid adversary or not. According to the model used in this thesis, it is concluded that Taliban does not meet the standards of a hybrid adversary, but with acquisition of standoff weapons it would quickly qualify as one. The model proved to work, and it could be used as a tool by intelligence of-ficers for estimating the threat levels of any group or identifying those groups that are al-ready or are about to develop into a hybrid adversary.
Resumo:
Utilization of biomass-based raw materials for the production of chemicals and materials is gaining an increasing interest. Due to the complex nature of biomass, a major challenge in its refining is the development of efficient fractionation and purification processes. Preparative chromatography and membrane filtration are selective, energy-efficient separation techniques which offer a great potential for biorefinery applications. Both of these techniques have been widely studied. On the other hand, only few process concepts that combine the two methods have been presented in the literature. The aim of this thesis was to find the possible synergetic effects provided by combining chromatographic and membrane separations, with a particular interest in biorefinery separation processes. Such knowledge could be used in the development of new, more efficient separation processes for isolating valuable compounds from complex feed solutions that are typical for the biorefinery environment. Separation techniques can be combined in various ways, from simple sequential coupling arrangements to fully-integrated hybrid processes. In this work, different types of combined separation processes as well as conventional chromatographic separation processes were studied for separating small molecules such as sugars and acids from biomass hydrolysates and spent pulping liquors. The combination of chromatographic and membrane separation was found capable of recovering high-purity products from complex solutions. For example, hydroxy acids of black liquor were successfully recovered using a novel multistep process based on ultrafiltration and size-exclusion chromatography. Unlike any other separation process earlier suggested for this challenging separation task, the new process concept does not require acidification pretreatment, and thus it could be more readily integrated into a pulp-mill biorefinery. In addition to the combined separation processes, steady-state recycling chromatography, which has earlier been studied for small-scale separations of high-value compounds only, was found a promising process alternative for biorefinery applications. In comparison to conventional batch chromatography, recycling chromatography provided higher product purity, increased the production rate and reduced the chemical consumption in the separation of monosaccharides from biomass hydrolysates. In addition, a significant further improvement in the process performance was obtained when a membrane filtration unit was integrated with recycling chromatography. In the light of the results of this work, separation processes based on combining membrane and chromatographic separations could be effectively applied for different biorefinery applications. The main challenge remains in the development of inexpensive separation materials which are resistant towards harsh process conditions and fouling.
Resumo:
The Arctic region becoming very active area of the industrial developments since it may contain approximately 15-25% of the hydrocarbon and other valuable natural resources which are in great demand nowadays. Harsh operation conditions make the Arctic region difficult to access due to low temperatures which can drop below -50 °C in winter and various additional loads. As a result, newer and modified metallic materials are implemented which can cause certain problems in welding them properly. Steel is still the most widely used material in the Arctic regions due to high mechanical properties, cheapness and manufacturability. Moreover, with recent steel manufacturing development it is possible to make up to 1100 MPa yield strength microalloyed high strength steel which can be operated at temperatures -60 °C possessing reasonable weldability, ductility and suitable impact toughness which is the most crucial property for the Arctic usability. For many years, the arc welding was the most dominant joining method of the metallic materials. Recently, other joining methods are successfully implemented into welding manufacturing due to growing industrial demands and one of them is the laser-arc hybrid welding. The laser-arc hybrid welding successfully combines the advantages and eliminates the disadvantages of the both joining methods therefore produce less distortions, reduce the need of edge preparation, generates narrower heat-affected zone, and increase welding speed or productivity significantly. Moreover, due to easy implementation of the filler wire, accordingly the mechanical properties of the joints can be manipulated in order to produce suitable quality. Moreover, with laser-arc hybrid welding it is possible to achieve matching weld metal compared to the base material even with the low alloying welding wires without excessive softening of the HAZ in the high strength steels. As a result, the laser-arc welding methods can be the most desired and dominating welding technology nowadays, and which is already operating in automotive and shipbuilding industries with a great success. However, in the future it can be extended to offshore, pipe-laying, and heavy equipment industries for arctic environment. CO2 and Nd:YAG laser sources in combination with gas metal arc source have been used widely in the past two decades. Recently, the fiber laser sources offered high power outputs with excellent beam quality, very high electrical efficiency, low maintenance expenses, and higher mobility due to fiber optics. As a result, fiber laser-arc hybrid process offers even more extended advantages and applications. However, the information about fiber or disk laser-arc hybrid welding is very limited. The objectives of the Master’s thesis are concentrated on the study of fiber laser-MAG hybrid welding parameters in order to understand resulting mechanical properties and quality of the welds. In this work only ferrous materials are reviewed. The qualitative methodological approach has been used to achieve the objectives. This study demonstrates that laser-arc hybrid welding is suitable for welding of many types, thicknesses and strength of steels with acceptable mechanical properties along very high productivity. New developments of the fiber laser-arc hybrid process offers extended capabilities over CO2 laser combined with the arc. This work can be used as guideline in hybrid welding technology with comprehensive study the effect of welding parameter on joint quality.
Resumo:
Bestraffning av internationella brott vid internationella och hybrida straffrättsliga domstolar har traditionellt och huvudsakligen grundat sig på principen om retributiv (vedergällande) rättvisa och ackusatorisk process snarare än återuppbyggande rättvisa och en inkvisitorisk modell. Därav har brottsoffrens ställning vid dessa straffrättsliga domstolar begränsat sig till den som innehas av vittnen vid Tribunalen som behandlar brott som begåtts i det forna Jugoslavien (ICTY), Internationella krigsförbrytartribunalen för Rwanda (ICTR) och Specialdomstolen för Sierra Leone (SCSL). Internationella brottmålsdomstolen (ICC), å sin sida, har medfört en viktig förändring gällande brottsoffrens ställning i internationella straffrättsliga fora, vilket innebär att de från att ha betraktats endast i egenskap av vittnen nu även har en rätt att delta och lämna sina synpunkter (i egenskap av brottsofferdeltagare) samt kräva gottgörelse. Denna trend har fortsatt inom området för internationell straffrätt, vilket manifesterats vid hybridtribunaler som tillsatts efter ICC såsom Kambodjadomstolen (ECCC) vid vilken brottsoffer kan agera civilrättsliga parter och Specialdomstolen för Libanon (STL) där brottsoffer kan inneha en deltagande roll. Den föreliggande studien behandlar två huvudsakliga frågeställningar, av vilka den första lyder: Vilken ställning tillskrivs brottsoffren vid internationella domstolar och hybridtribunaler? I detta hänseende argumenterar författaren, sammanfattningsvis, för att brottsoffrens ställning vid internationella straffrättsliga domstolar och hybridtribunaler huvudsakligen tar sig uttryck på tre sätt, d.v.s. som brottsoffer i egenskap av vittnen, som brottsoffer i egenskap av deltagande brottsoffer/civilrättsliga parter samt som brottsoffer som kräver gottgörelse. Den andra frågeställningen för denna studie lyder: På vilket sätt fungerar brottsoffrens ställning som vittnen, brottsofferdeltagande/civilrättsliga parter och gottgörelsekrävande vid internationella och hybrida straffrättsliga domstolar? -------------------------------------------------------------------------------------------------------------------------------------------------- Kansainvälisten rikosten rankaiseminen kansainvälisissä rikostuomioistuimissa ja hybridituomioistuimissa on perinteisesti enimmäkseen perustunut retributiivisen oikeuden ja akkusatorisen menetelmän soveltamiseen pikemmin kuin restoratiivisen oikeuden ja inkvisitorisen menetelmän soveltamiseen. Niinpä uhrien asema kansainvälisissä rikostuomioistuimissa ja hybridituomioistuimissa on rajoittunut todistajan asemaan entisen Jugoslavian kansainvälisessä sotarikostuomioistuimessa (ICTY), Ruandan kansainvälisessä sotarikostuomioistuimessa (ICTR) ja Sierra Leonen erikoistuomioistuimessa (SCSL). Kansainvälisen rikostuomioistuimen (ICC) perustaminen on kuitenkin merkinnyt tärkeää muutosta uhrien asemaan kansainvälisen rikosoikeuden alalla siten, että kun uhrit aiemmin nähtiin vain todistajina, heillä on nyt myös mahdollisuus tuoda esiin omat näkökantansa (osallistumisoikeus) ja vaatia hyvitystä. Tämä suuntaus on jatkunut kansainvälisen rikosoikeuden alalla ICC:n jälkeen perustetuissa hybridituomioistuimissa, kuten Kambodzhan erityistuomioistuimessa (ECCC), missä uhrit voivat olla asianosaisen asemassa, sekä Libanonin erityistuomioistuimessa (STL), missä uhrit voivat osallistua prosessiin. Tämä tutkimus käsittelee kahta keskeistä kysymystä. Ensinnäkin: Mikä on rikoksen uhrien asema kansainvälisissä rikostuomioistuimissa ja hybridituomioistuimissa? Tutkimuksessa päädytään mm. siihen, että uhrien asema kansainvälisissä rikostuomioistuimissa ja hybridituomioistuimissa voi koostua pääosin kolmesta ulottuvuudesta eli uhrit todistajina, uhrit prosessiin osallistujina/asianosaisina ja uhrit hyvityksen hakijoina. Tutkimuksen toinen keskeinen kysymys on: Miten uhrien asema todistajina, prosessiin osallistujina/ asianosaisina ja hyvityksen hakijoina toimii kansainvälisissä rikostuomioistuimissa ja hybridituomioistuimissa?
Resumo:
The assembly and maintenance of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. The VV is made of stainless steel, which has poor machinability and tends to work harden very rapidly, and all the machining operations need to be carried out from inside of the ITER VV. A general industrial robot cannot be used due to its poor stiffness in the heavy duty machining process, and this will cause many problems, such as poor surface quality, tool damage, low accuracy. Therefore, one of the most suitable options should be a light weight mobile robot which is able to move around inside of the VV and perform different machining tasks by replacing different cutting tools. Reducing the mass of the robot manipulators offers many advantages: reduced material costs, reduced power consumption, the possibility of using smaller actuators, and a higher payload-to-robot weight ratio. Offsetting these advantages, the lighter weight robot is more flexible, which makes it more difficult to control. To achieve good machining surface quality, the tracking of the end effector must be accurate, and an accurate model for a more flexible robot must be constructed. This thesis studies the dynamics and control of a 10 degree-of-freedom (DOF) redundant hybrid robot (4-DOF serial mechanism and 6-DOF 6-UPS hexapod parallel mechanisms) hydraulically driven with flexible rods under the influence of machining forces. Firstly, the flexibility of the bodies is described using the floating frame of reference method (FFRF). A finite element model (FEM) provided the Craig-Bampton (CB) modes needed for the FFRF. A dynamic model of the system of six closed loop mechanisms was assembled using the constrained Lagrange equations and the Lagrange multiplier method. Subsequently, the reaction forces between the parallel and serial parts were used to study the dynamics of the serial robot. A PID control based on position predictions was implemented independently to control the hydraulic cylinders of the robot. Secondly, in machining, to achieve greater end effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. This thesis investigates the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two schemes of intelligent control for a hydraulically driven parallel mechanism based on the dynamic model: (1) a fuzzy-PID self-tuning controller composed of the conventional PID control and with fuzzy logic, and (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self-tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel mechanism based on rod length predictions. The serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should be controlled to hold the hexa-element. Thirdly, a finite element approach of multibody systems using the Special Euclidean group SE(3) framework is presented for a parallel mechanism with flexible piston rods under the influence of machining forces. The flexibility of the bodies is described using the nonlinear interpolation method with an exponential map. The equations of motion take the form of a differential algebraic equation on a Lie group, which is solved using a Lie group time integration scheme. The method relies on the local description of motions, so that it provides a singularity-free formulation, and no parameterization of the nodal variables needs to be introduced. The flexible slider constraint is formulated using a Lie group and used for modeling a flexible rod sliding inside a cylinder. The dynamic model of the system of six closed loop mechanisms was assembled using Hamilton’s principle and the Lagrange multiplier method. A linearized hydraulic control system based on rod length predictions was implemented independently to control the hydraulic cylinders. Consequently, the results of the simulations demonstrating the behavior of the robot machine are presented for each case study. In conclusion, this thesis studies the dynamic analysis of a special hybrid (serialparallel) robot for the above-mentioned special task involving the ITER and investigates different control algorithms that can significantly improve machining performance. These analyses and results provide valuable insight into the design and control of the parallel robot with flexible rods.
Resumo:
The report presents the results of the commercialization project called the Container logistic services for forest bioenergy. The project promotes new business that is emerging around overall container logistic services in the bioenergy sector. The results assess the European markets of the container logistics for biomass, enablers for new business creation and required service bundles for the concept. We also demonstrate the customer value of the container logistic services for different market segments. The concept analysis is based on concept mapping, quality function deployment process (QFD) and business network analysis. The business network analysis assesses key shareholders and their mutual connections. The performance of the roadside chipping chain is analysed by the logistic cost simulation, RFID system demonstration and freezing tests. The EU has set the renewable energy target to 20 % in 2020 of which Biomass could account for two-thirds. In the Europe, the production of wood fuels was 132.9 million solid-m3 in 2012 and production of wood chips and particles was 69.0 million solidm3. The wood-based chips and particle flows are suitable for container transportation providing market of 180.6 million loose- m3 which mean 4.5 million container loads per year. The intermodal logistics of trucks and trains are promising for the composite containers because the biomass does not freeze onto the inner surfaces in the unloading situations. The overall service concept includes several packages: container rental, container maintenance, terminal services, RFID-tracking service, and simulation and ERP-integration service. The container rental and maintenance would provide transportation entrepreneurs a way to increase the capacity without high investment costs. The RFID-concept would lead to better work planning improving profitability throughout the logistic chain and simulation supports fuel supply optimization.
Resumo:
Preparative liquid chromatography is one of the most selective separation techniques in the fine chemical, pharmaceutical, and food industries. Several process concepts have been developed and applied for improving the performance of classical batch chromatography. The most powerful approaches include various single-column recycling schemes, counter-current and cross-current multi-column setups, and hybrid processes where chromatography is coupled with other unit operations such as crystallization, chemical reactor, and/or solvent removal unit. To fully utilize the potential of stand-alone and integrated chromatographic processes, efficient methods for selecting the best process alternative as well as optimal operating conditions are needed. In this thesis, a unified method is developed for analysis and design of the following singlecolumn fixed bed processes and corresponding cross-current schemes: (1) batch chromatography, (2) batch chromatography with an integrated solvent removal unit, (3) mixed-recycle steady state recycling chromatography (SSR), and (4) mixed-recycle steady state recycling chromatography with solvent removal from fresh feed, recycle fraction, or column feed (SSR–SR). The method is based on the equilibrium theory of chromatography with an assumption of negligible mass transfer resistance and axial dispersion. The design criteria are given in general, dimensionless form that is formally analogous to that applied widely in the so called triangle theory of counter-current multi-column chromatography. Analytical design equations are derived for binary systems that follow competitive Langmuir adsorption isotherm model. For this purpose, the existing analytic solution of the ideal model of chromatography for binary Langmuir mixtures is completed by deriving missing explicit equations for the height and location of the pure first component shock in the case of a small feed pulse. It is thus shown that the entire chromatographic cycle at the column outlet can be expressed in closed-form. The developed design method allows predicting the feasible range of operating parameters that lead to desired product purities. It can be applied for the calculation of first estimates of optimal operating conditions, the analysis of process robustness, and the early-stage evaluation of different process alternatives. The design method is utilized to analyse the possibility to enhance the performance of conventional SSR chromatography by integrating it with a solvent removal unit. It is shown that the amount of fresh feed processed during a chromatographic cycle and thus the productivity of SSR process can be improved by removing solvent. The maximum solvent removal capacity depends on the location of the solvent removal unit and the physical solvent removal constraints, such as solubility, viscosity, and/or osmotic pressure limits. Usually, the most flexible option is to remove solvent from the column feed. Applicability of the equilibrium design for real, non-ideal separation problems is evaluated by means of numerical simulations. Due to assumption of infinite column efficiency, the developed design method is most applicable for high performance systems where thermodynamic effects are predominant, while significant deviations are observed under highly non-ideal conditions. The findings based on the equilibrium theory are applied to develop a shortcut approach for the design of chromatographic separation processes under strongly non-ideal conditions with significant dispersive effects. The method is based on a simple procedure applied to a single conventional chromatogram. Applicability of the approach for the design of batch and counter-current simulated moving bed processes is evaluated with case studies. It is shown that the shortcut approach works the better the higher the column efficiency and the lower the purity constraints are.
Resumo:
The original contribution of this thesis to knowledge are novel digital readout architectures for hybrid pixel readout chips. The thesis presents asynchronous bus-based architecture, a data-node based column architecture and a network-based pixel matrix architecture for data transportation. It is shown that the data-node architecture achieves readout efficiency 99% with half the output rate as a bus-based system. The network-based solution avoids “broken” columns due to some manufacturing errors, and it distributes internal data traffic more evenly across the pixel matrix than column-based architectures. An improvement of > 10% to the efficiency is achieved with uniform and non-uniform hit occupancies. Architectural design has been done using transaction level modeling (TLM) and sequential high-level design techniques for reducing the design and simulation time. It has been possible to simulate tens of column and full chip architectures using the high-level techniques. A decrease of > 10 in run-time is observed using these techniques compared to register transfer level (RTL) design technique. Reduction of 50% for lines-of-code (LoC) for the high-level models compared to the RTL description has been achieved. Two architectures are then demonstrated in two hybrid pixel readout chips. The first chip, Timepix3 has been designed for the Medipix3 collaboration. According to the measurements, it consumes < 1 W/cm^2. It also delivers up to 40 Mhits/s/cm^2 with 10-bit time-over-threshold (ToT) and 18-bit time-of-arrival (ToA) of 1.5625 ns. The chip uses a token-arbitrated, asynchronous two-phase handshake column bus for internal data transfer. It has also been successfully used in a multi-chip particle tracking telescope. The second chip, VeloPix, is a readout chip being designed for the upgrade of Vertex Locator (VELO) of the LHCb experiment at CERN. Based on the simulations, it consumes < 1.5 W/cm^2 while delivering up to 320 Mpackets/s/cm^2, each packet containing up to 8 pixels. VeloPix uses a node-based data fabric for achieving throughput of 13.3 Mpackets/s from the column to the EoC. By combining Monte Carlo physics data with high-level simulations, it has been demonstrated that the architecture meets requirements of the VELO (260 Mpackets/s/cm^2 with efficiency of 99%).