50 resultados para Radial diffusers
Resumo:
Tämä työ on tehty Stora Enson Imatran kartonkitehtaan kunnossapidosta vastaavalle Efora Oy:lle. Tavoitteena oli selvittää syy Imatran Kartonkikone 5:n kuivatussylinterien laakerivaurioiden suureen määrään verrattuna tehtaiden kolmeen muuhun kartonkikoneeseen. Tutkimuksissa keskityttiin laakerien käyttöolosuhteisiin. Syyn selvittämiseksi työssä vertailtiin eri kartonkikoneiden kiertoöljyvoitelujärjestelmiä, voiteluöljyjä, voiteluolosuhteita, öljyjen kuntoa ja kunnon seurantaa. Myös laakereihin kohdistuvia kuormia arvioitiin. Alan kirjallisuuden avulla on käyty läpi kartonkikoneen rakennetta ja toimintaa tarvittavassa laajuudessa, voitelun ja laakerin vaurioitumisen teoriaa sekä voiteluaineiden ominaisuuksien ja koostumuksen perusteita. Vertailevissa tutkimuksissa ei löytynyt vauriomäärien eroja selittäviä eroavaisuuksia Imatran tehtaiden eri kartonkikoneiden välillä, joskin Kartonkikone 5:n kiertovoiteluöljyn puhtaustaso oli muita Imatran kartonkikoneita heikompi. Laakerikuormien osalta havaittiin joidenkin laakerien käyvän laakerille asetetun vähimmäiskuorman alittavilla kuormituksilla. Vähimmäiskuormaa pienempi radiaalikuorma voi johtaa laakerin virheelliseen toimintaan ja edelleen vaurioitumiseen. Voiteluolosuhteet todettiin erittäin vaikeiksi ja niillä on epäilemättä vaikutusta voiteluöljyn ja laakerien lyhentyneeseen käyttöikään.
Resumo:
At present, permanent magnet synchronous generators (PMSGs) are of great interest. Since they do not have electrical excitation losses, the highly efficient, lightweight and compact PMSGs equipped with damper windings work perfectly when connected to a network. However, in island operation, the generator (or parallel generators) alone is responsible for the building up of the network and maintaining its voltage and reactive power level. Thus, in island operation, a PMSG faces very tight constraints, which are difficult to meet, because the flux produced by the permanent magnets (PMs) is constant and the voltage of the generator cannot be controlled. Traditional electrically excited synchronous generators (EESGs) can easily meet these constraints, because the field winding current is controllable. The main drawback of the conventional EESG is the relatively high excitation loss. This doctoral thesis presents a study of an alternative solution termed as a hybrid excitation synchronous generator (HESG). HESGs are a special class of electrical machines, where the total rotor current linkage is produced by the simultaneous action of two different excitation sources: the electrical and permanent magnet (PM) excitation. An overview of the existing HESGs is given. Several HESGs are introduced and compared with the conventional EESG from technical and economic points of view. In the study, the armature-reaction-compensated permanent magnet synchronous generator with alternated current linkages (ARC-PMSG with ACL) showed a better performance than the other options. Therefore, this machine type is studied in more detail. An electromagnetic design and a thermal analysis are presented. To verify the operation principle and the electromagnetic design, a down-sized prototype of 69 kVA apparent power was built. The experimental results are demonstrated and compared with the predicted ones. A prerequisite for an ARC-PMSG with ACL is an even number of pole pairs (p = 2, 4, 6, …) in the machine. Naturally, the HESG technology is not limited to even-pole-pair machines. However, the analysis of machines with p = 3, 5, 7, … becomes more complicated, especially if analytical tools are used, and is outside the scope of this thesis. The contribution of this study is to propose a solution where an ARC-PMSG replaces an EESG in electrical power generation while meeting all the requirements set for generators given for instance by ship classification societies, particularly as regards island operation. The maximum power level when applying the technology studied here is mainly limited by the economy of the machine. The larger the machine is, the smaller is the efficiency benefit. However, it seems that machines up to ten megawatts of power could benefit from the technology. However, in low-power applications, for instance in the 500 kW range, the efficiency increase can be significant.
Resumo:
Diffusion tensor imaging (DTI) is an advanced magnetic resonance imaging (MRI) technique. DTI is based on free thermal motion (diffusion) of water molecules. The properties of diffusion can be represented using parameters such as fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity, which are calculated from DTI data. These parameters can be used to study the microstructure in fibrous structure such as brain white matter. The aim of this study was to investigate the reproducibility of region-of-interest (ROI) analysis and determine associations between white matter integrity and antenatal and early postnatal growth at term age using DTI. Antenatal growth was studied using both the ROI and tract-based spatial statistics (TBSS) method and postnatal growth using only the TBSS method. The infants included to this study were born below 32 gestational weeks or birth weight less than 1,501 g and imaged with a 1.5 T MRI system at term age. Total number of 132 infants met the inclusion criteria between June 2004 and December 2006. Due to exclusion criteria, a total of 76 preterm infants (ROI) and 36 preterm infants (TBSS) were accepted to this study. The ROI analysis was quite reproducible at term age. Reproducibility varied between white matter structures and diffusion parameters. Normal antenatal growth was positively associated with white matter maturation at term age. The ROI analysis showed associations only in the corpus callosum. Whereas, TBSS revealed associations in several brain white matter areas. Infants with normal antenatal growth showed more mature white matter compared to small for gestational age infants. The gestational age at birth had no significant association with white matter maturation at term age. It was observed that good early postnatal growth associated negatively with white matter maturation at term age. Growth-restricted infants seemed to have delayed brain maturation that was not fully compensated at term, despite catchup growth.
Resumo:
Maailmanlaajuinen ilmastopolitiikka asettaa vaativia tavoitteita hiilidioksidipäästöjen vähentämiselle. Suurin haaste on tuottaa energiaa mahdollisimman alhaisin kustannuksin käyttäen uusiutuvia ja ympäristöä säästäviä energiamuotoja. Tuulivoimasta on tullut nopeimmin kehittyvä sähköntuotantotapa, ja tuuliturbiinien koon kasvun myötä on myös generaattorien koko kasvanut merkittävästi 1990-luvulta lähtien. Generaattorin massiivisuus suoravetoisessa tuuliturbiinin voimansiirrossa vaatii tarkkoja kuormitustarkasteluja, jotta rakenne kestäisi tuuliturbiinin eliniän. Tuuliturbiinin kuormitukset ovat stokastisia ja toisinaan erittäin suuria, mikä vaikeuttaa kuormitusten määrittämistä. Tuulen kuormitusten lisäksi generaattori altistuu eri toimintojen kautta muillekin kuormituksille, ja tästä syystä on otettava huomioon jarrutuksen, dynaamisen tasapainon ja ohjauksen sekä verkkovikojen aiheuttamat rasitukset tuuliturbiinin voimansiirrolle. Edellisten lisäksi työssä on tarkasteltu erilaisia rakenneratkaisuja sekä pyritty kiinnittämään huomio niiden kuormankantokykyyn ja jäykkyyteen sekä generaattorin keventämismahdollisuuksiin verrattuna perinteisiin radiaalivuogeneraattoreihin. Työssä on pyritty selvittämään rakenteen kuormitukset siten, että pystyttäisiin optimoimaan mahdollisimman kevyt rakenne. Optimoinnin kohteena on pinnarakenteisen generaattorin rakenteen massa puolien, puolan kulmien sekä tukirenkaan ja niistä aiheutuvien erilaisten rakenneyhdistelmien suhteen tarkasteltuna.
Resumo:
In this Thesis, we study various aspects of ring dark solitons (RDSs) in quasi-two-dimensional toroidally trapped Bose-Einstein condensates, focussing on atomic realisations thereof. Unlike the well-known planar dark solitons, exact analytic expressions for RDSs are not known. We address this problem by presenting exact localized soliton-like solutions to the radial Gross-Pitaevskii equation. To date, RDSs have not been experimentally observed in cold atomic gases, either. To this end, we propose two protocols for their creation in experiments. It is also currently well known that in dimensions higher than one, (ring) dark solitons are susceptible, in general, to an irreversible decay into vortex-antivortex pairs through the snake instability. We show that the snake instability is caused by an unbalanced quantum pressure across the soliton's notch, linking the instability to the Bogoliubov-de Gennes spectrum. In particular, if the angular symmetry is maintained (or the toroidal trapping is restrictive enough), we show that the RDS is stable (long-lived with a lifetime of order seconds) in two dimensions. Furthermore, when the decay does take place, we show that the snake instability can in fact be reversible, and predict a previously unknown revival phenomenon for the original (many-)RDS system: the soliton structure is recovered and all the point-phase singularities (i.e. vortices) disappear. Eventually, however, the decay leads to an example of quantum turbulence; a quantum example of the laminar-to-turbulent type of transition.
Resumo:
Today’s electrical machine technology allows increasing the wind turbine output power by an order of magnitude from the technology that existed only ten years ago. However, it is sometimes argued that high-power direct-drive wind turbine generators will prove to be of limited practical importance because of their relatively large size and weight. The limited space for the generator in a wind turbine application together with the growing use of wind energy pose a challenge for the design engineers who are trying to increase torque without making the generator larger. When it comes to high torque density, the limiting factor in every electrical machine is heat, and if the electrical machine parts exceed their maximum allowable continuous operating temperature, even for a short time, they can suffer permanent damage. Therefore, highly efficient thermal design or cooling methods is needed. One of the promising solutions to enhance heat transfer performances of high-power, low-speed electrical machines is the direct cooling of the windings. This doctoral dissertation proposes a rotor-surface-magnet synchronous generator with a fractional slot nonoverlapping stator winding made of hollow conductors, through which liquid coolant can be passed directly during the application of current in order to increase the convective heat transfer capabilities and reduce the generator mass. This doctoral dissertation focuses on the electromagnetic design of a liquid-cooled direct-drive permanent-magnet synchronous generator (LC DD-PMSG) for a directdrive wind turbine application. The analytical calculation of the magnetic field distribution is carried out with the ambition of fast and accurate predicting of the main dimensions of the machine and especially the thickness of the permanent magnets; the generator electromagnetic parameters as well as the design optimization. The focus is on the generator design with a fractional slot non-overlapping winding placed into open stator slots. This is an a priori selection to guarantee easy manufacturing of the LC winding. A thermal analysis of the LC DD-PMSG based on a lumped parameter thermal model takes place with the ambition of evaluating the generator thermal performance. The thermal model was adapted to take into account the uneven copper loss distribution resulting from the skin effect as well as the effect of temperature on the copper winding resistance and the thermophysical properties of the coolant. The developed lumpedparameter thermal model and the analytical calculation of the magnetic field distribution can both be integrated with the presented algorithm to optimize an LC DD-PMSG design. Based on an instrumented small prototype with liquid-cooled tooth-coils, the following targets have been achieved: experimental determination of the performance of the direct liquid cooling of the stator winding and validating the temperatures predicted by an analytical thermal model; proving the feasibility of manufacturing the liquid-cooled tooth-coil winding; moreover, demonstration of the objectives of the project to potential customers.
Resumo:
This thesis presents a framework for segmentation of clustered overlapping convex objects. The proposed approach is based on a three-step framework in which the tasks of seed point extraction, contour evidence extraction, and contour estimation are addressed. The state-of-art techniques for each step were studied and evaluated using synthetic and real microscopic image data. According to obtained evaluation results, a method combining the best performers in each step was presented. In the proposed method, Fast Radial Symmetry transform, edge-to-marker association algorithm and ellipse fitting are employed for seed point extraction, contour evidence extraction and contour estimation respectively. Using synthetic and real image data, the proposed method was evaluated and compared with two competing methods and the results showed a promising improvement over the competing methods, with high segmentation and size distribution estimation accuracy.
Resumo:
Initially identified as stress activated protein kinases (SAPKs), the c-Jun Nterminal kinases (JNKs) are currently accepted as potent regulators of various physiologically important cellular events. Named after their competence to phosphorylate transcription factor c-Jun in response to UVtreatment, JNKs play a key role in cell proliferation, cell death or cell migration. Interestingly, these functions are crucial for proper brain formation. The family consists of three JNK isoforms, JNK1, JNK2 and JNK3. Unlike brain specific JNK3 isoform, JNK1 and JNK2 are ubiquitously expressed. It is estimated that ten splice variants exist. However, the detailed cellular functions of these remain undetermined. In addition, physiological conditions keep the activities of JNK2 and JNK3 low in comparison with JNK1, whereas cellular stress raises the activity of these isoforms dramatically. Importantly, JNK1 activity is constitutively high in neurons, yet it does not stimulate cell death. This suggests a valuable role for JNK1 in brain development, but also as an important mediator of cell wellbeing. The aim of this thesis was to characterize the functional relationship between JNK1 and SCG10. We found that SCG10 is a bona fide target for JNK. By employing differential centrifugation we showed that SCG10 co-localized with active JNK, MKK7 and JIP1 in a fraction containing endosomes and Golgi vesicles. Investigation of JNK knockout tissues using phosphospecific antibodies recognizing JNK-specific phosphorylation sites on SCG10 (Ser 62/Ser 73) showed that phosphorylation of endogenous SCG10 was dramatically decreased in Jnk1-/- brains. Moreover, we found that JNK and SCG10 co-express during early embryonic days in brain regions that undergo extensive neuronal migration. Our study revealed that selective inhibition of JNK in the cytoplasm significantly increased both the frequency of exit from the multipolar stage and radial migration rate. However, as a consequence, it led to ill-defined cellular organization. Furthermore, we found that multipolar exit and radial migration in Jnk1 deficient mice can be connected to changes in phosphorylation state of SCG10. Also, the expression of a pseudo-phosphorylated mutant form of SCG10, mimicking the JNK1- phopshorylated form, brings migration rate back to normal in Jnk1 knockout mouse embryos. Furthermore, we investigated the role of SCG10 and JNK in regulation of Golgi apparatus (GA) biogenesis and whether pathological JNK action could be discernible by its deregulation. We found that SCG10 maintains GA integrity as with the absence of SCG10 neurons present more compact fragmented GA structure, as shown by the knockdown approach. Interestingly, neurons isolated from Jnk1-/- mice show similar characteristics. Block of ER to GA is believed to be involved in development of Parkinson's disease. Hence, by using a pharmacological approach (Brefeldin A treatment), we showed that GA recovery is delayed upon removal of the drug in Jnk1-/- neurons to an extent similar to the shRNA SCG10-treated cells. Finally, we investigated the role of the JNK1-SCG10 duo in the maintenance of GA biogenesis following excitotoxic insult. Although the GA underwent fragmentation in response to NMDA treatment, we observed a substantial delay in GA disintegration in neurons lacking either JNK1 or SCG10.
Resumo:
The purpose of this work is to obtain a better understanding of behaviour of possible ultrasound appliance on fluid media mixing. The research is done in the regard to Newtonian and non-Newtonian fluids. The process of ultrasound appliance on liquids is modelled in COMSOL Multiphysics software. The influence of ultrasound using is introduced as waveform equation. Turbulence modelling is fulfilled by the k-ε model in Newtonian fluid. The modeling of ultrasound assisted mixing in non-Newtonian fluids is based on the power law. To verify modelling results two practical methods are used: Particle Image Velocimetry and measurements of mixing time. Particle Image Velocimetry allows capturing of velocity flow field continuously and presents detailed depiction of liquid dynamics. The second way of verification is the comparison of mixing time of homogeneity. Experimentally achievement of mixing time is done by conductivity measurements. In modelling part mixing time is achieved by special module of COMSOL Multiphysics – the transport of diluted species. Both practical and modelling parts show similar radial mechanism of fluid flow under ultrasound appliance – from the horn tip fluid moves to the bottom and along the walls goes back. Velocity profiles are similar in modelling and experimental part in the case of Newtonian fluid. In the case of non-Newtonian fluid velocity profiles do not agree. The development track of ultrasound-assisted mixing modelling is presented in the thesis.
Resumo:
Työssä kehitettiin suurnopeuskäyttöön soveltuva kestomagnetoitu roottori olemassa olevan induktiokoneen staattorirunkoon. Kehitystyön tarkoituksena oli selvittää roottorin mekaaniset raja-arvot, kuten maksimi kehänopeus. Samalla otettiin kantaa myös tarvittaviin analysointi- ja mitoitusmenetelmiin. Maksimi kehänopeuden, laakeroinnin ja roottorin skaalattavuuden selvittäminen edellytti myös tarkkaa materiaaliselvitystä ja optimointia. Tästä syystä työn aikana tehtiin tiivistä yhteistyötä materiaalitoimittajien kanssa. Työn tuloksena syntyi uusi menetelmä toteuttaa radiaalisen magneettivuon luova kestomagneettiroottori 200 m/s kehänopeudelle. Suunniteltua roottoriratkaisua käytetään testausroottorina, jolla selvitetään valmistuksen, kokoonpanon ja sähkötehon rajoitteet käytännössä. Suunnittelutyö edellyttikin jatkuvaa iterointia sähkösuunnittelun ja roottorin osien valmistajien kanssa, jotta löydettiin paras kompromissiratkaisu roottorin prototyyppiin. Tämän seurauksena saatiin luotua varsin tarkat suunnittelu- ja analysointiraja-arvot kestomagneettiroottorin tuotteistettavia versioita varten.
Resumo:
Rolling element bearings are essential components of rotating machinery. The spherical roller bearing (SRB) is one variant seeing increasing use, because it is self-aligning and can support high loads. It is becoming increasingly important to understand how the SRB responds dynamically under a variety of conditions. This doctoral dissertation introduces a computationally efficient, three-degree-of-freedom, SRB model that was developed to predict the transient dynamic behaviors of a rotor-SRB system. In the model, bearing forces and deflections were calculated as a function of contact deformation and bearing geometry parameters according to nonlinear Hertzian contact theory. The results reveal how some of the more important parameters; such as diametral clearance, the number of rollers, and osculation number; influence ultimate bearing performance. Distributed defects, such as the waviness of the inner and outer ring, and localized defects, such as inner and outer ring defects, are taken into consideration in the proposed model. Simulation results were verified with results obtained by applying the formula for the spherical roller bearing radial deflection and the commercial bearing analysis software. Following model verification, a numerical simulation was carried out successfully for a full rotor-bearing system to demonstrate the application of this newly developed SRB model in a typical real world analysis. Accuracy of the model was verified by comparing measured to predicted behaviors for equivalent systems.
Resumo:
In the design of electrical machines, efficiency improvements have become very important. However, there are at least two significant cases in which the compactness of electrical machines is critical and the tolerance of extremely high losses is valued: vehicle traction, where very high torque density is desired at least temporarily; and direct-drive wind turbine generators, whose mass should be acceptably low. As ever higher torque density and ever more compact electrical machines are developed for these purposes, thermal issues, i.e. avoidance of over-temperatures and damage in conditions of high heat losses, are becoming of utmost importance. The excessive temperatures of critical machine components, such as insulation and permanent magnets, easily cause failures of the whole electrical equipment. In electrical machines with excitation systems based on permanent magnets, special attention must be paid to the rotor temperature because of the temperature-sensitive properties of permanent magnets. The allowable temperature of NdFeB magnets is usually significantly less than 150 ˚C. The practical problem is that the part of the machine where the permanent magnets are located should stay cooler than the copper windings, which can easily tolerate temperatures of 155 ˚C or 180 ˚C. Therefore, new cooling solutions should be developed in order to cool permanent magnet electrical machines with high torque density and because of it with high concentrated losses in stators. In this doctoral dissertation, direct and indirect liquid cooling techniques for permanent magnet synchronous electrical machines (PMSM) with high torque density are presented and discussed. The aim of this research is to analyse thermal behaviours of the machines using the most applicable and accurate thermal analysis methods and to propose new, practical machine designs based on these analyses. The Computational Fluid Dynamics (CFD) thermal simulations of the heat transfer inside the machines and lumped parameter thermal network (LPTN) simulations both presented herein are used for the analyses. Detailed descriptions of the simulated thermal models are also presented. Most of the theoretical considerations and simulations have been verified via experimental measurements on a copper tooth-coil (motorette) and on various prototypes of electrical machines. The indirect liquid cooling systems of a 100 kW axial flux (AF) PMSM and a 110 kW radial flux (RF) PMSM are analysed here by means of simplified 3D CFD conjugate thermal models of the parts of both machines. In terms of results, a significant temperature drop of 40 ̊C in the stator winding and 28 ̊C in the rotor of the AF PMSM was achieved with the addition of highly thermally conductive materials into the machine: copper bars inserted in the teeth, and potting material around the end windings. In the RF PMSM, the potting material resulted in a temperature decrease of 6 ̊C in the stator winding, and in a decrease of 10 ̊C in the rotor embedded-permanentmagnets. Two types of unique direct liquid cooling systems for low power machines are analysed herein to demonstrate the effectiveness of the cooling systems in conditions of highly concentrated heat losses. LPTN analysis and CFD thermal analysis (the latter being particularly useful for unique design) were applied to simulate the temperature distribution within the machine models. Oil-immersion cooling provided good cooling capability for a 26.6 kW PMSM of a hybrid vehicle. A direct liquid cooling system for the copper winding with inner stainless steel tubes was designed for an 8 MW directdrive PM synchronous generator. The design principles of this cooling solution are described in detail in this thesis. The thermal analyses demonstrate that the stator winding and the rotor magnet temperatures are kept significantly below their critical temperatures with demineralized water flow. A comparison study of the coolant agents indicates that propylene glycol is more effective than ethylene glycol in arctic conditions.
Resumo:
The objective of this master’s thesis was to design and simulate a wind powered hydraulic heating system that can operate independently in remote places where the use of electricity is not possible. Components for the system were to be selected in such a way that the conditions for manufacture, use and economic viability are the as good as possible. Savonius rotor was chosen for wind turbine, due to its low cut in speed and robust design. Savonius rotor produces kinetic energy in wide wind speed range and it can withstand high wind gusts. Radial piston pump was chosen for the flow source of the hydraulic heater. Pump type was selected due to its characteristics in low rotation speeds and high efficiency. Volume flow from the pump is passed through the throttle orifice. Pressure drop over the orifice causes the hydraulic oil to heat up and, thus, creating thermal energy. Thermal energy in the oil is led to radiator where it conducts heat to the environment. The hydraulic heating system was simulated. For this purpose a mathematical models of chosen components were created. In simulation wind data gathered by Finnish meteorological institute for 167 hours was used as input. The highest produced power was achieved by changing the orifice diameter so that the rotor tip speed ratio follows the power curve. This is not possible to achieve without using electricity. Thus, for the orifice diameter only one, the optimal value was defined. Results from the simulation were compared with investment calculations. Different parameters effecting the investment profitability were altered in sensitivity analyses in order to define the points of investment profitability. Investment was found to be profitable only with high average wind speeds.
Resumo:
Background: Interest in limb defects has grown after the thalidomide tragedy in the 1960s. As a result, congenital malformation registries, monitoring changes in birthprevalence and defect patterns, have been established in several countries. However, there are only a few true population based studies on birth prevalence of upper limb defects. The burden of hospital care among these children, specifically in terms of the number of admissions and total time spent in hospital, is also unknown. Aims and Methods: This study is based on information gathered from the Finnish Register of Congenital malformations (FRM) and the Finnish Hospital Discharge Register (FHDR). A total of 417 children born between 1993 and 2005 with an upper limb defect were gathered from the FRM. The upper limb defects were classified using the International Federation of Societies for Surgery of the Hand -classification that enables comparison with previous and future studies. Birth and live birth prevalence, sex and side distribution, frequency of associated anomalies as well as the proportion of perinatal and infant deaths according to the different subtypes were calculated. The number of hospital admissions, days spent in hospital, number and type of surgical operations were collected from the FHDR. Special features of two subgroups, radial ray defects (RRD) and constriction band syndrome (CBS), were explored. Results: Upper limb defects were observed in 417 of 753 342 consecutive births and in 392 of 750 461 live births. Birth prevalence was 5.5 per 10 000 births and 5.2 per 10 000 live births. Multiple anomalies or a known syndrome was found in 250 cases (60%). Perinatal mortality was 139 per 1000 births and infant mortality 135 per 1000 live births (overall Finnish perinatal mortality <5 per 1000 births and infant mortality 3.7 per 1000 live births). Altogether, 138 infants had RRD and 120 (87%) of these had either a known syndrome or multiple major anomalies. The proportion of perinatal deaths in RRD group was 29% (40/138) and infant deaths 35% (43/123). Fifty-one children had CBS in upper limbs. Fifteen of these (29%) had other major anomalies associated with constriction rings. The number of hospital admissions per year of children with congenital upper limb defects was 11-fold and the time spent in hospital 13-fold as compared with the general paediatric population. Conclusions: Birth prevalence of congenital upper limb defects was 5.5 per 10 000 births and 5.2 per 10 000 live births. RRD was especially associated with other major anomalies and high mortality. Nearly one third of the children with CBS also had other major anomalies suggesting different aetiologies inside the group. The annual burden of hospital care of children with congenital upper limb defects was at least 11-fold as compared with the general paediatric population.
Resumo:
Thesis: A liquid-cooled, direct-drive, permanent-magnet, synchronous generator with helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit offers an excellent combination of attributes to reliably provide economic wind power for the coming generation of wind turbines with power ratings between 5 and 20MW. A generator based on the liquid-cooled architecture proposed here will be reliable and cost effective. Its smaller size and mass will reduce build, transport, and installation costs. Summary: Converting wind energy into electricity and transmitting it to an electrical power grid to supply consumers is a relatively new and rapidly developing method of electricity generation. In the most recent decade, the increase in wind energy’s share of overall energy production has been remarkable. Thousands of land-based and offshore wind turbines have been commissioned around the globe, and thousands more are being planned. The technologies have evolved rapidly and are continuing to evolve, and wind turbine sizes and power ratings are continually increasing. Many of the newer wind turbine designs feature drivetrains based on Direct-Drive, Permanent-Magnet, Synchronous Generators (DD-PMSGs). Being low-speed high-torque machines, the diameters of air-cooled DD-PMSGs become very large to generate higher levels of power. The largest direct-drive wind turbine generator in operation today, rated just below 8MW, is 12m in diameter and approximately 220 tonne. To generate higher powers, traditional DD-PMSGs would need to become extraordinarily large. A 15MW air-cooled direct-drive generator would be of colossal size and tremendous mass and no longer economically viable. One alternative to increasing diameter is instead to increase torque density. In a permanent magnet machine, this is best done by increasing the linear current density of the stator windings. However, greater linear current density results in more Joule heating, and the additional heat cannot be removed practically using a traditional air-cooling approach. Direct liquid cooling is more effective, and when applied directly to the stator windings, higher linear current densities can be sustained leading to substantial increases in torque density. The higher torque density, in turn, makes possible significant reductions in DD-PMSG size. Over the past five years, a multidisciplinary team of researchers has applied a holistic approach to explore the application of liquid cooling to permanent-magnet wind turbine generator design. The approach has considered wind energy markets and the economics of wind power, system reliability, electromagnetic behaviors and design, thermal design and performance, mechanical architecture and behaviors, and the performance modeling of installed wind turbines. This dissertation is based on seven publications that chronicle the work. The primary outcomes are the proposal of a novel generator architecture, a multidisciplinary set of analyses to predict the behaviors, and experimentation to demonstrate some of the key principles and validate the analyses. The proposed generator concept is a direct-drive, surface-magnet, synchronous generator with fractional-slot, duplex-helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit to accommodate liquid coolant flow. The novel liquid-cooling architecture is referred to as LC DD-PMSG. The first of the seven publications summarized in this dissertation discusses the technological and economic benefits and limitations of DD-PMSGs as applied to wind energy. The second publication addresses the long-term reliability of the proposed LC DD-PMSG design. Publication 3 examines the machine’s electromagnetic design, and Publication 4 introduces an optimization tool developed to quickly define basic machine parameters. The static and harmonic behaviors of the stator and rotor wheel structures are the subject of Publication 5. And finally, Publications 6 and 7 examine steady-state and transient thermal behaviors. There have been a number of ancillary concrete outcomes associated with the work including the following. X Intellectual Property (IP) for direct liquid cooling of stator windings via an embedded coaxial coolant conduit, IP for a lightweight wheel structure for lowspeed, high-torque electrical machinery, and IP for numerous other details of the LC DD-PMSG design X Analytical demonstrations of the equivalent reliability of the LC DD-PMSG; validated electromagnetic, thermal, structural, and dynamic prediction models; and an analytical demonstration of the superior partial load efficiency and annual energy output of an LC DD-PMSG design X A set of LC DD-PMSG design guidelines and an analytical tool to establish optimal geometries quickly and early on X Proposed 8 MW LC DD-PMSG concepts for both inner and outer rotor configurations Furthermore, three technologies introduced could be relevant across a broader spectrum of applications. 1) The cost optimization methodology developed as part of this work could be further improved to produce a simple tool to establish base geometries for various electromagnetic machine types. 2) The layered sheet-steel element construction technology used for the LC DD-PMSG stator and rotor wheel structures has potential for a wide range of applications. And finally, 3) the direct liquid-cooling technology could be beneficial in higher speed electromotive applications such as vehicular electric drives.