36 resultados para Problems
Resumo:
The increasing performance of computers has made it possible to solve algorithmically problems for which manual and possibly inaccurate methods have been previously used. Nevertheless, one must still pay attention to the performance of an algorithm if huge datasets are used or if the problem iscomputationally difficult. Two geographic problems are studied in the articles included in this thesis. In the first problem the goal is to determine distances from points, called study points, to shorelines in predefined directions. Together with other in-formation, mainly related to wind, these distances can be used to estimate wave exposure at different areas. In the second problem the input consists of a set of sites where water quality observations have been made and of the results of the measurements at the different sites. The goal is to select a subset of the observational sites in such a manner that water quality is still measured in a sufficient accuracy when monitoring at the other sites is stopped to reduce economic cost. Most of the thesis concentrates on the first problem, known as the fetch length problem. The main challenge is that the two-dimensional map is represented as a set of polygons with millions of vertices in total and the distances may also be computed for millions of study points in several directions. Efficient algorithms are developed for the problem, one of them approximate and the others exact except for rounding errors. The solutions also differ in that three of them are targeted for serial operation or for a small number of CPU cores whereas one, together with its further developments, is suitable also for parallel machines such as GPUs.
Resumo:
Solving the water crisis in the developing world is a critical issue. Four billion people in the globe, so called the Base of the Pyramid (BoP) population suffer from inadequate access to safe drinking water, while millions die daily from waterborne diseases and lack of clean water. The BoP people desperately need to obtain a satisfactory access to safe water sources. In order to address the issue, this research has been carried out. To provide holistic consideration to the matter, comprehensive exploration of various causes of the water crisis and its impacts in developing countries were discussed. Then, various viable and relevant solutions to the problem have been thoroughly scrutinized, including scientific, rational, practical and speculative approaches, examination of existing methods, technologies and products at the BoP water market. The role of clean water to the sustainable development was specifically featured. The paper also has studied social and economic factors, actors and circumstances which affect the market development of clean water technologies in the BoP. Possibilities and potentials of successful business between foreign water enterprises and BoP consumers were considered, while primary obstacles are deliberated on, with suggestion of the ways to tackle them. Technologies and products which are needed by the poor must be affordable, sustainable and of an appropriate quality. The crucial question of technology transfer was soundly discussed with pointing out main hindrances on the way of its implementation between the developed and developing world. The means to overcome these barriers were properly observed as well. To explore to some extent the possibility and feasibility of technology transfer from Finland to the BoP sector, 3 case study analyses have been implemented. Personal discussions in form of interviews were conducted at Kemira, Outotec and Fenno Water, Finnish water treatment and supply enterprises. The results of the interviews shed light on the specific practical matters, actual obstacles and potential solutions of the technology transfer from Finland to low-income countries.
Resumo:
Fluid handling systems account for a significant share of the global consumption of electrical energy. They also suffer from problems, which reduce their energy efficiency and increase life-cycle costs. Detecting or predicting these problems in time can make fluid handling systems more environmentally and economically sustainable to operate. In this Master’s Thesis, significant problems in fluid systems were studied and possibilities to develop variable-speed-drive-based detection methods for them was discussed. A literature review was conducted to find significant problems occurring in fluid handling systems containing pumps, fans and compressors. To find case examples for evaluating the feasibility of variable-speed-drive-based methods, queries were sent to industrial companies. As a result of this, the possibility to detect heat exchanger fouling with a variable-speed drive was analysed with data from three industrial cases. It was found that a mass flow rate estimate, which can be generated with a variable speed drive, can be used together with temperature measurements to monitor a heat exchanger’s thermal performance. Secondly, it was found that the fouling-related increase in the pressure drop of a heat exchanger can be monitored with a variable speed drive. Lastly, for systems where the flow device is speed controlled with by a pressure measurement, it was concluded that increasing rotational speed can be interpreted as progressing fouling in the heat exchanger.