55 resultados para Power flow calculations
Resumo:
Uusissa ydinvoimalaitostyypeissä aiotaan käyttää aiempaa enemmän passiivisia turvallisuusjärjestelmiä. Näistä järjestelmistä on vielä vähän käyttökokemusta aktiivisiin turvallisuusjärjestelmiin verrattuna. Työssä tarkastellaan passiivisten turvallisuusjärjestelmien toimintaa sekä etsitään niiden mahdollisia luontaisia vikatilanteita. Luontaisten vikatilanteiden seurauksia järjestelmän suorituskykyyn arvioitiin yksinkertaisilla laskuilla ja mallintamalla RELAP5/MOD3.2.2 beta -termohydrauliikkaohjelmalla. Tarkastelu rajattiin kahden erityyppisen ydinvoimalaitoksen passiivisiin turvallisuusjärjestelmiin. Turvallisuusjärjestelmien suuntaa antavat mitat ja käyttötilanteiden parametrit saatiin laitosvalmistajien laitoskuvauksista. Osoittautui, että vikatilanteissa passiivisissa turvallisuusjärjestelmissä geometrialla on merkittävä vaikutus järjestelmän kapasiteettiin. Tarkasteluissa saatiin myös selville, että laitosmittakaavassa painovoimaisen hätälisävesijärjestelmän turvallisuustoiminto voi toteutua vaikka esiintyisi lyhytaikaisia toimintahäiriöitä, kuten lauhtumista hätälisävesisäiliössä. Sen sijaan lämmönsiirtopiirin virtausreittien tukkeutuminen voi olla fysikaalisesti merkittävä toimintaa haittaava tekijä.
Resumo:
Diplomityössä tutkitaan sähkön ja lämmön yhteistuotannon kannattavuutta Turengin nykyisen lämmöntuotannon yhteydessä. Tavoitteena on löytää taloudellisesti kilpailukykyiset tuotantovaihtoehdot Turengin energiahuollon kehittämisessä. Ensimmäisenä tarkasteltarkastellaan voimalaitoksen nykyiseen tuotantolaitteistoon kuuluvan vastapainehöyryturbiinin käyttöönoton mahdollisuuksia. Tämän jälkeen suoritetaan kannattavuuslaskelmat neljälle vaihtoehtoiselle investointitapaukselle. Voimalaitosinvestoinnit kohdistuvat kaasumoottori- ja kaasuturbiinivoimalaitoksiin, joilla tuotetaan sähköä, kaukolämpöä ja eräissä tapauksissa myös prosessihöyryä. Voimalaitosten nettosähkötehot ovat neljästä yhdeksään megawattia. Voimalaitosyksiköiden energiantuotanto määritetään Turengin lämpökuormien perusteella. Tuotannon määrityksessä apuna käytetään WinTEHO –ohjelmistoa, johon luodaan tarvittavat energiatiedostot. Kannattavuuslaskelmat suoritetaan vertaamalla investointivaihtoehtojen aiheuttamia vuotuisia kassavirtoja nykyisen tuotannon mukaisiin kassavirtoihin. Kassavirtalaskelmasta saadaan kullekin vaihtoehdolle nettonykyarvo, sisäinen korko ja takaisinmaksuaika. Tarkastelun tuloksena saatiin, että voimalaitosvaihtoehdoista kannattavin on investointi yhteen kaasumoottoriin, jolla tuotetaan sähkön lisäksi vain kaukolämpöä. Alhaisilla sähkön hinnoilla kaasuturbiinivaihtoehdot ovat suunnilleen yhtä kannattavia. Investointien nykyarvo valitulla korkokannalla on positiivinen, kun sähkön markkinahinnan keskiarvo tuotantokaudella ylittää likimain tason 130 mk/MWh. Nykyisillä markkinahinnoilla investoinnit eivät ole kannattavia. Investoiminen uuteen kaasumoottoriin tai -turbiiniin osoittautui kannattavammaksi kuin sähkön tuotannon aloittaminen laitoksen nykyisellä höyryturbiinilla. Merkittävin syy tähän oli höyryturbiinituotannon korkeat henkilöstökustannukset. Tehty selvitys tukee vallitsevaa käsitystä, että nykytekniikalla sähkön ja lämmön yhteistuotanto on taloudellisesti kilpailukykyistä myös pienessä kokoluokassa.
Resumo:
Työn tarkoituksena oli laatia suunnitelma ilmaan johdettavien epäpuhtauksien päästökartoitukselle Porvoon öljynjalostamolla. Raskasmetallien, metaanin, fluorivetyhapon, rikkivedyn ja ammoniakin merkittävät päästöpaikat ja -tarkkailumenetelmät kartoitettaisiin tulevaa päästöraportointia varten. Tarkkailun alaisten komponenttien muodostuminen, kulkeutuminen ja merkittävät päästöpaikat Porvoon jalostamolla selvitettiin kirjallisuuslähteiden, jalostamon toimintajärjestelmän ohjeiden sekä työntekijöiden haastattelujen perusteella. Merkittäviä häiriöpäästötilanteita kartoitettiin ja arvioitiin jalostamon poikkeamatilastojen ja haastattelujen avulla. Normaalitoiminnan aikana tarkkailun alaisista epäpuhtauksista vapautuu ilmaan merkittäviä määriä ainoastaan metaania ja raskasmetalleja. Metaania vapautuu ilmaan polttoprosesseissa sekä hajapäästönä. Raskasmetallipäästöjä syntyy pohjaöljyn poltossa energialaitoksella sekä leijukatalyyttisessä krakkauksessa. Rikkilaitosten häiriötilanteista aiheutuu rikkivety- ja ammoniakkipäästöjä pääasiassa soihtujärjestelmän kautta. Alkylointiyksikön vuodoissa voi vapautua fluorivetyhappoa ilmaan. Päästömääriä arvioidaan pääosin laskennallisesti. Päästökartoitussuunnitelma on kokonaisuudessaan tämän työn liitteenä. Näyttäisi siltä, että TRS-yhdisteiden, ammoniakin ja fluorivetyhapon ilmapäästöt eivät ole merkittäviä Porvoon öljynjalostamolla. Uuden pohjaöljy-yksikön käyttöönotto on vähentänyt myös raskasmetallipäästöjä energialaitoksella. Metaanipäästö vaikuttaa kartoitukseen sisällytettävistä epäpuhtauksista merkityksellisimmältä Porvoon öljynjalostamolla.
Resumo:
This thesis gathers knowledge about ongoing high-temperature reactor projects around the world. Methods for calculating coolant flow and heat transfer inside a pebble-bed reactor core are also developed. The thesis begins with the introduction of high-temperature reactors including the current state of the technology. Process heat applications that could use the heat from a high-temperature reactor are also introduced. A suitable reactor design with data available in literature is selected for the calculation part of the thesis. Commercial computational fluid dynamics software Fluent is used for the calculations. The pebble-bed is approximated as a packed-bed, which causes sink terms to the momentum equations of the gas flowing through it. A position dependent value is used for the packing fraction. Two different models are used to calculate heat transfer. First a local thermal equilibrium is assumed between the gas and solid phases and a single energy equation is used. In the second approach, separate energy equations are used for the phases. Information about steady state flow behavior, pressure loss, and temperature distribution in the core is obtained as results of the calculations. The effect of inlet mass flow rate to pressure loss is also investigated. Data found in literature and the results correspond each other quite well, considered the amount of simplifications in the calculations. The models developed in this thesis can be used to solve coolant flow and heat transfer in a pebble-bed reactor, although additional development and model validation is needed for better accuracy and reliability.
Resumo:
There is an increasing reliance on computers to solve complex engineering problems. This is because computers, in addition to supporting the development and implementation of adequate and clear models, can especially minimize the financial support required. The ability of computers to perform complex calculations at high speed has enabled the creation of highly complex systems to model real-world phenomena. The complexity of the fluid dynamics problem makes it difficult or impossible to solve equations of an object in a flow exactly. Approximate solutions can be obtained by construction and measurement of prototypes placed in a flow, or by use of a numerical simulation. Since usage of prototypes can be prohibitively time-consuming and expensive, many have turned to simulations to provide insight during the engineering process. In this case the simulation setup and parameters can be altered much more easily than one could with a real-world experiment. The objective of this research work is to develop numerical models for different suspensions (fiber suspensions, blood flow through microvessels and branching geometries, and magnetic fluids), and also fluid flow through porous media. The models will have merit as a scientific tool and will also have practical application in industries. Most of the numerical simulations were done by the commercial software, Fluent, and user defined functions were added to apply a multiscale method and magnetic field. The results from simulation of fiber suspension can elucidate the physics behind the break up of a fiber floc, opening the possibility for developing a meaningful numerical model of the fiber flow. The simulation of blood movement from an arteriole through a venule via a capillary showed that the model based on VOF can successfully predict the deformation and flow of RBCs in an arteriole. Furthermore, the result corresponds to the experimental observation illustrates that the RBC is deformed during the movement. The concluding remarks presented, provide a correct methodology and a mathematical and numerical framework for the simulation of blood flows in branching. Analysis of ferrofluids simulations indicate that the magnetic Soret effect can be even higher than the conventional one and its strength depends on the strength of magnetic field, confirmed experimentally by Völker and Odenbach. It was also shown that when a magnetic field is perpendicular to the temperature gradient, there will be additional increase in the heat transfer compared to the cases where the magnetic field is parallel to the temperature gradient. In addition, the statistical evaluation (Taguchi technique) on magnetic fluids showed that the temperature and initial concentration of the magnetic phase exert the maximum and minimum contribution to the thermodiffusion, respectively. In the simulation of flow through porous media, dimensionless pressure drop was studied at different Reynolds numbers, based on pore permeability and interstitial fluid velocity. The obtained results agreed well with the correlation of Macdonald et al. (1979) for the range of actual flow Reynolds studied. Furthermore, calculated results for the dispersion coefficients in the cylinder geometry were found to be in agreement with those of Seymour and Callaghan.
Resumo:
This thesis includes several thermal hydraulic analyses related to the Loviisa WER 440 nuclear power plant units. The work consists of experimental studies, analysis of the experiments, analysis of some plant transits and development of a calculational model for calculation of boric acid concentrations in the reactor. In the first part of the thesis, in the case of won of boric acid solution behaviour during long term cooling period of LOCAs, experiments were performed in scaled down test facilities. The experimental data together with the results of RELAPS/MOD3 simulations were used to develop a model for calculations of boric acid concentrations in the reactor during LOCAs. The results of calculations showed that margins to critical concentrations that would lead to boric acid crystallization were large, both in the reactor core and in the lower plenum. This was mainly caused by the fact that water in the primary cooling circuit includes borax (Na)BsO,.IOHZO), which enters the reactor when ECC water is taken from the sump and greatly increases boric acid solubility in water. In the second part, in the case of simulation of horizontal steam generators, experiments were performed with PACTEL integral test loop to simulate loss of feedwater transients. The PACTEL experiments, as well as earlier REWET III natural circulation tests, were analyzed with RELAPS/MOD3 Version Sm5 code. The analysis showed that the code was capable of simulating the main events during the experiments. However, in the case of loss of secondary side feedwater the code was not completely capable to simulate steam superheating in the secondary side of the steam generators. The third part of the work consists of simulations of Loviisa VVER reactor pump trip transients with RELAPSlMODI Eur, RELAPS/MOD3 and CATHARE codes. All three codes were capable to simulate the two selected pump trip transients and no significant differences were found between the results of different codes. Comparison of the calculated results with the data measured in the Loviisa plant also showed good agreement.
Resumo:
The design methods and languages targeted to modern System-on-Chip designs are facing tremendous pressure of the ever-increasing complexity, power, and speed requirements. To estimate any of these three metrics, there is a trade-off between accuracy and abstraction level of detail in which a system under design is analyzed. The more detailed the description, the more accurate the simulation will be, but, on the other hand, the more time consuming it will be. Moreover, a designer wants to make decisions as early as possible in the design flow to avoid costly design backtracking. To answer the challenges posed upon System-on-chip designs, this thesis introduces a formal, power aware framework, its development methods, and methods to constraint and analyze power consumption of the system under design. This thesis discusses on power analysis of synchronous and asynchronous systems not forgetting the communication aspects of these systems. The presented framework is built upon the Timed Action System formalism, which offer an environment to analyze and constraint the functional and temporal behavior of the system at high abstraction level. Furthermore, due to the complexity of System-on-Chip designs, the possibility to abstract unnecessary implementation details at higher abstraction levels is an essential part of the introduced design framework. With the encapsulation and abstraction techniques incorporated with the procedure based communication allows a designer to use the presented power aware framework in modeling these large scale systems. The introduced techniques also enable one to subdivide the development of communication and computation into own tasks. This property is taken into account in the power analysis part as well. Furthermore, the presented framework is developed in a way that it can be used throughout the design project. In other words, a designer is able to model and analyze systems from an abstract specification down to an implementable specification.
Resumo:
Diplomityössä perehdytään tuuliturbineissa käytettyjen täystehokonvertterien tehohäviöihin ja hyötysuhteeseen. Täystehokonvertterissa generaattorin tuottama sähköteho tasasuunnataan hyvällä hyötysuhteella aktiivisella geenraattorisillalla konvertterin välipiiriin ja edelleen vaihtosuunnataan aktiivisella verkkovaihtosuuntaajasillalla siirtoverkkoon. Työn tarkoituksena on antaa yleiskuva tehohäviöiden jakautumisesta ja yksinkertaistaa niiden laskentaa. Häviömekanismit ja häviöiden määräytyminen esitellään pääkomponenttitasolla. Tehohäviöiden osalta keskitytään erityisesti muuntajateräksestä valmistettujen sinisuotimien ja du/dt-suotimien rautahäviöihin. Ongelmana rautahäviöiden määrittämisessä on korkeilla taajuuksilla tapahtuvat häviöt, joiden laskentaan ei ole yleensä saatavilla tarvittavia materiaaliparametrejä. Tehohäviöiden laskentaa varten toteutettu laskentasovellus on esitelty periaatteellisina vuokaavioina ja sovelluksella saatavia tuloksia on esitetty ja vertailtu mitattuihin tuloksiin.
Resumo:
Welding is one of the most important process of modern industry. Welding technology is used in the manufacture and repair a wide variety of products from different metals and alloys. In this thesis the different aspects of arc welding were discussed, such as stability and control of welding arc, power supplies for arc welding (especially the welding inverters because it is the most modern welding power source). All parameters of power source have influence on the arc parameters and its by-turn influence on quality. The ways of control for arc welding inverter power sources have been considered. Calculations and modeling in Matlab/Simulink were done for PI control method. All parameters of power source have influence on the arc parameters and its by-turn influence on quality.
Resumo:
Supersonic axial turbine stages typically exhibit lower efficiencies than subsonic axial turbine stages. One reason for the lower efficiency is the occurrence of shock waves. With higher pressure ratios the flow inside the turbine becomes relatively easily supersonic if there is only one turbine stage. Supersonic axial turbines can be designed in smaller physical size compared to subsonic axial turbines of same power. This makes them good candidates for turbochargers in large diesel engines, where space can be a limiting factor. Also the production costs are lower for a supersonic axial turbine stage than for two subsonic stages. Since supersonic axial turbines are typically low reaction turbines, they also create lower axial forces to be compensated with bearings compared to high reaction turbines. The effect of changing the stator-rotor axial gap in a small high (rotational) speed supersonic axial flow turbine is studied in design and off-design conditions. Also the effect of using pulsatile mass flow at the supersonic stator inlet is studied. Five axial gaps (axial space between stator and rotor) are modeled using threedimensional computational fluid dynamics at the design and three axial gaps at the off-design conditions. Numerical reliability is studied in three independent studies. An additional measurement is made with the design turbine geometry at intermediate off-design conditions and is used to increase the reliability of the modelling. All numerical modelling is made with the Navier-Stokes solver Finflo employing Chien’s k ¡ ² turbulence model. The modelling of the turbine at the design and off-design conditions shows that the total-to-static efficiency of the turbine decreases when the axial gap is increased in both design and off-design conditions. The efficiency drops almost linearily at the off-design conditions, whereas the efficiency drop accelerates with increasing axial gap at the design conditions. The modelling of the turbine stator with pulsatile inlet flow reveals that the mass flow pulsation amplitude is decreased at the stator throat. The stator efficiency and pressure ratio have sinusoidal shapes as a function of time. A hysteresis-like behaviour is detected for stator efficiency and pressure ratio as a function of inlet mass flow, over one pulse period. This behaviour arises from the pulsatile inlet flow. It is important to have the smallest possible axial gap in the studied turbine type in order to maximize the efficiency. The results for the whole turbine can also be applied to some extent in similar turbines operating for example in space rocket engines. The use of a supersonic stator in a pulsatile inlet flow is shown to be possible.
Resumo:
Transitional flow past a three-dimensional circular cylinder is a widely studied phenomenon since this problem is of interest with respect to many technical applications. In the present work, the numerical simulation of flow past a circular cylinder, performed by using a commercial CFD code (ANSYS Fluent 12.1) with large eddy simulation (LES) and RANS (κ - ε and Shear-Stress Transport (SST) κ - ω! model) approaches. The turbulent flow for ReD = 1000 & 3900 is simulated to investigate the force coefficient, Strouhal number, flow separation angle, pressure distribution on cylinder and the complex three dimensional vortex shedding of the cylinder wake region. The numerical results extracted from these simulations have good agreement with the experimental data (Zdravkovich, 1997). Moreover, grid refinement and time-step influence have been examined. Numerical calculations of turbulent cross-flow in a staggered tube bundle continues to attract interest due to its importance in the engineering application as well as the fact that this complex flow represents a challenging problem for CFD. In the present work a time dependent simulation using κ – ε, κ - ω! and SST models are performed in two dimensional for a subcritical flow through a staggered tube bundle. The predicted turbulence statistics (mean and r.m.s velocities) have good agreement with the experimental data (S. Balabani, 1996). Turbulent quantities such as turbulent kinetic energy and dissipation rate are predicted using RANS models and compared with each other. The sensitivity of grid and time-step size have been analyzed. Model constants sensitivity study have been carried out by adopting κ – ε model. It has been observed that model constants are very sensitive to turbulence statistics and turbulent quantities.
Resumo:
Cutting of thick section stainless steel and mild steel, and medium section aluminium using the high power ytterbium fibre laser has been experimentally investigated in this study. Theoretical models of the laser power requirement for cutting of a metal workpiece and the melt removal rate were also developed. The calculated laser power requirement was correlated to the laser power used for the cutting of 10 mm stainless steel workpiece and 15 mm mild steel workpiece using the ytterbium fibre laser and the CO2 laser. Nitrogen assist gas was used for cutting of stainless steel and oxygen was used for mild steel cutting. It was found that the incident laser power required for cutting at a given cutting speed was lower for fibre laser cutting than for CO2 laser cutting indicating a higher absorptivity of the fibre laser beam by the workpiece and higher melting efficiency for the fibre laser beam than for the CO2 laser beam. The difficulty in achieving an efficient melt removal during high speed cutting of the 15 mmmild steel workpiece with oxygen assist gas using the ytterbium fibre laser can be attributed to the high melting efficiency of the ytterbium fibre laser. The calculated melt flow velocity and melt film thickness correlated well with the location of the boundary layer separation point on the 10 mm stainless steel cut edges. An increase in the melt film thickness caused by deceleration of the melt particles in the boundary layer by the viscous shear forces results in the flow separation. The melt flow velocity increases with an increase in assist gas pressure and cut kerf width resulting in a reduction in the melt film thickness and the boundary layer separation point moves closer to the bottom cut edge. The cut edge quality was examined by visual inspection of the cut samples and measurement of the cut kerf width, boundary layer separation point, cut edge squareness (perpendicularity) deviation, and cut edge surface roughness as output quality factors. Different regions of cut edge quality in 10 mm stainless steel and 4 mm aluminium workpieces were defined for different combinations of cutting speed and laserpower.Optimization of processing parameters for a high cut edge quality in 10 mmstainless steel was demonstrated
Resumo:
The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.
Resumo:
Today the limitedness of fossil fuel resources is clearly realized. For this reason there is a strong focus throughout the world on shifting from fossil fuel based energy system to biofuel based energy system. In this respect Finland with its proven excellent forestry capabilities has a great potential to accomplish this goal. It is regarded that one of the most efficient ways of wood biomass utilization is to use it as a feedstock for fast pyrolysis process. By means of this process solid biomass is converted into liquid fuel called bio-oil which can be burnt at power plants, used for hydrogen generation through a catalytic steam reforming process and as a source of valuable chemical compounds. Nowadays different configurations of this process have found their applications in several pilot plants worldwide. However the circulating fluidized bed configuration is regarded as the one with the highest potential to be commercialized. In the current Master’s Thesis a feasibility study of circulating fluidized bed fast pyrolysis process utilizing Scots pine logs as a raw material was conducted. The production capacity of the process is 100 000 tonne/year of bio-oil. The feasibility study is divided into two phases: a process design phase and economic feasibility analysis phase. The process design phase consists of mass and heat balance calculations, equipment sizing, estimation of pressure drops in the pipelines and development of plant layout. This phase resulted in creation of process flow diagrams, equipment list and Microsoft Excel spreadsheet that calculates the process mass and heat balances depending on the bio-oil production capacity which can be set by a user. These documents are presented in the current report as appendices. In the economic feasibility analysis phase there were at first calculated investment and operating costs of the process. Then using these costs there was calculated the price of bio-oil which is required to reach the values of internal rate of return of 5%, 10%, 20%, 30%, 40%, and 50%.
Resumo:
Tämä työ tehtiin Kone Industrial Oy:lle Major Projects yksikköön, laatuosastolle. Kone Major Projects yksikkö keskittyy erikoisiin ja suuriin hissi- ja liukuporras projekteihin. Työn tavoitteena oli luoda harmonisoitu prosessi hissikomponenttien laaduntarkkailua varten sekä tarkastella ja vertailla kustannussäästöjä, jota tällä uudella prosessilla voidaan saavuttaa. Tavoitteena oli saavuttaa 80-prosentin kustannussäästöt laatukustannuksissa uuden laatuprosessin avulla. Työn taustana ja tutkimusongelmana ovat lisääntyneet erikoisprojektit ja niiden myötä lisääntynyt laaduntarkkailun tarve. Ongelmana laaduntarkkailussa voitiin pitää harmonisoidun ja selkeän prosessin puuttumista C-prosessikomponenttien valmistuksessa. Lisäksi kehitysprosessin aikana luotiin vanhojen työkalujen pohjalta keskeinen laaduntarkkailutyökalu, CTQ-työkalu. Työssä käsitellään ensin Konetta yhtiönä ja selvitetään Koneen keskeisimmät prosessit työn taustaksi. Teoria osuudessa käsitellään prosessin kehitykseen liittyviä teorioita sekä yleisiä laatukäsitteitä ja esitetään teorioita laadun asemasta nykypäivänä. Lopuksi käsitellään COQ eli laatukustannusten teoriaa ja esitellään teoria PAF-analyysille, jota käytetään työssä laatukustannusten vertailuun case esimerkin avulla. Työssä kuvataan CTQ prosessin luominen alusta loppuun ja case esimerkin avulla testataan uutta CTQ prosessia pilottihankkeessa. Tässä case esimerkissä projektin bracket eli johdekiinnitysklipsi tuotetaan uuden laatuprosessin avulla sekä tehdään kustannusvertailu saman projektin toisen bracketin kanssa, joka on tuotettu ennen uuden laatuprosessin implementoimista. Työn lopputuloksena CTQ prosessi saatiin luotua ja sitä pystyttiin testaamaan käytännössä case esimerkin avulla. Tulosten perusteella voidaan sanoa, että CTQ prosessin käyttö vähentää laatukustannuksia huomattavasti ja helpottaa laadunhallintaa C-prosessikomponenttien tuotannossa.