41 resultados para Population set-based methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Valupurseiden ja jäysteiden poistaminen on osa alumiinipainevalujen tuotantoprosessia. Työssä on tutkittu käytössä olevien ja uusien menetelmien mahdollisuuksia taloudellisempaan tuotantoon. Purseiden ja jäysteiden poistamiseen käytettävien menetelmien lisäksi tutkimuskohteita ja ideoita on haettu muista metallien työstömenetelmistä. Valupurseiden ja jäysteiden määritelmiä, muodostumista ja luokittelua on esitelty laajasti. Menetelmien tutkimus on painottunut valupurseiden poistamiseen ja valun jälkeistä leikkaamista on tutkittu erityisesti sisäpuolisten muotojen työstämiseen käytettyjen pistintyökalujen kautta. Muotin ulostyöntötapin purseen poistaminen on ollut tärkeä asia menetelmien tutkimuksissa. Valupurseiden, leikkaus- ja koneistusjäysteiden poistamiseksi lastuavista työstömenetelmistä tutkittuja ovat koneistaminen koneistuskeskuksella, aventaminen, hiertopuhallus, suihkuhiertäminen, vesisuihkuleikkaus, ultraäänityöstö, harjaus, painehiertäminen, hiominen kohdistetuilla ja kohdistamattomilla menetelmillä. Myös terminen jäysteenpoistomenetelmä (TEM), kemiallinen työstö (ECM) ja laserleikkaus on otettu esiin tutkimuksessa. Työn tuloksena on näkemys tutkittujen menetelmien jatkokehitystarpeesta ja mahdollisuudesta soveltaa niitä sarjatuotantoon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investment decision-making on far-reaching innovation ideas is one of the key challenges practitioners and academics face in the field of innovation management. However, the management practices and theories strongly rely on evaluation systems that do not fit in well with this setting. These systems and practices normally cannot capture the value of future opportunities under high uncertainty because they ignore the firm’s potential for growth and flexibility. Real options theory and options-based methods have been offered as a solution to facilitate decision-making on highly uncertain investment objects. Much of the uncertainty inherent in these investment objects is attributable to unknown future events. In this setting, real options theory and methods have faced some challenges. First, the theory and its applications have largely been limited to market-priced real assets. Second, the options perspective has not proved as useful as anticipated because the tools it offers are perceived to be too complicated for managerial use. Third, there are challenges related to the type of uncertainty existing real options methods can handle: they are primarily limited to parametric uncertainty. Nevertheless, the theory is considered promising in the context of far-reaching and strategically important innovation ideas. The objective of this dissertation is to clarify the potential of options-based methodology in the identification of innovation opportunities. The constructive research approach gives new insights into the development potential of real options theory under non-parametric and closeto- radical uncertainty. The distinction between real options and strategic options is presented as an explanans for the discovered limitations of the theory. The findings offer managers a new means of assessing future innovation ideas based on the frameworks constructed during the course of the study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kirjallisuusarvostelu

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind power is a low-carbon energy production form that reduces the dependence of society on fossil fuels. Finland has adopted wind energy production into its climate change mitigation policy, and that has lead to changes in legislation, guidelines, regional wind power areas allocation and establishing a feed-in tariff. Wind power production has indeed boosted in Finland after two decades of relatively slow growth, for instance from 2010 to 2011 wind energy production increased with 64 %, but there is still a long way to the national goal of 6 TWh by 2020. This thesis introduces a GIS-based decision-support methodology for the preliminary identification of suitable areas for wind energy production including estimation of their level of risk. The goal of this study was to define the least risky places for wind energy development within Kemiönsaari municipality in Southwest Finland. Spatial multicriteria decision analysis (SMCDA) has been used for searching suitable wind power areas along with many other location-allocation problems. SMCDA scrutinizes complex ill-structured decision problems in GIS environment using constraints and evaluation criteria, which are aggregated using weighted linear combination (WLC). Weights for the evaluation criteria were acquired using analytic hierarchy process (AHP) with nine expert interviews. Subsequently, feasible alternatives were ranked in order to provide a recommendation and finally, a sensitivity analysis was conducted for the determination of recommendation robustness. The first study aim was to scrutinize the suitability and necessity of existing data for this SMCDA study. Most of the available data sets were of sufficient resolution and quality. Input data necessity was evaluated qualitatively for each data set based on e.g. constraint coverage and attribute weights. Attribute quality was estimated mainly qualitatively by attribute comprehensiveness, operationality, measurability, completeness, decomposability, minimality and redundancy. The most significant quality issue was redundancy as interdependencies are not tolerated by WLC and AHP does not include measures to detect them. The third aim was to define the least risky areas for wind power development within the study area. The two highest ranking areas were Nordanå-Lövböle and Påvalsby followed by Helgeboda, Degerdal, Pungböle, Björkboda, and Östanå-Labböle. The fourth aim was to assess the recommendation reliability, and the top-ranking two areas proved robust whereas the other ones were more sensitive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tässä pro gradu – tutkielmassa tutkin kuvataiteen ja kuvataiteellisten menetelmien käyttöä organisaatioissa psykologisen omistajuuden tarpeiden ilmentäjänä. Tarkoituksenani on kuroa umpeen aukkoa tutkimuksen ja käytännön välillä mitä tulee kuvataiteen käyttöön organisaatioissa. Tavoitteena on selvittää, mitä lisäarvoa kuvataiteen käyttö tuo organisaatioille ja miten se ilmentää psykologista omistajuutta. Tutkimus on laadullista ja aineistona ovat strukturoimattomat haastattelut, jotka on analysoitu diskurssinanalyysillä. Haastatteluaineisosta löysin eritasoisia diskursseja. Päädiskurssi näkymättömästä näkyväksi ilmentää psykologiseen omistajuuteen motivoivista tarpeista stimuluksen tarvetta, tilan diskurssi ilmentää kodin tarvetta ja identiteetin diskurssi ilmentää identiteetin tarvetta. Tilan ja identiteetin diskurssit menevät osittain päällekkäin. Kuvataideteokset ilmentävät psykologisen omistajuuden motivaatiotarpeista erityisesti stimulusta. Ne toimivat stimuluksena tuomalla psykologista läheisyyttä organisaatioihin. Kuvataiteen käytöllä organisaatioissa saadaan näkymättömästä näkyväksi psykologiseen omistajuuteen motivoivia tarpeita. Kuvataideteokset tuovat psykologista läheisyyttä ja stimuloivat näihin liittyviä merkityksellisiä asioita. Kuvataide on esteettinen käytännön työkalu organisaatiokäyttäytymisen kehittämiseksi, tunnejohtamiseen fuusioissa ja henkilöstön sitouttamisee

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identification of low-dimensional structures and main sources of variation from multivariate data are fundamental tasks in data analysis. Many methods aimed at these tasks involve solution of an optimization problem. Thus, the objective of this thesis is to develop computationally efficient and theoretically justified methods for solving such problems. Most of the thesis is based on a statistical model, where ridges of the density estimated from the data are considered as relevant features. Finding ridges, that are generalized maxima, necessitates development of advanced optimization methods. An efficient and convergent trust region Newton method for projecting a point onto a ridge of the underlying density is developed for this purpose. The method is utilized in a differential equation-based approach for tracing ridges and computing projection coordinates along them. The density estimation is done nonparametrically by using Gaussian kernels. This allows application of ridge-based methods with only mild assumptions on the underlying structure of the data. The statistical model and the ridge finding methods are adapted to two different applications. The first one is extraction of curvilinear structures from noisy data mixed with background clutter. The second one is a novel nonlinear generalization of principal component analysis (PCA) and its extension to time series data. The methods have a wide range of potential applications, where most of the earlier approaches are inadequate. Examples include identification of faults from seismic data and identification of filaments from cosmological data. Applicability of the nonlinear PCA to climate analysis and reconstruction of periodic patterns from noisy time series data are also demonstrated. Other contributions of the thesis include development of an efficient semidefinite optimization method for embedding graphs into the Euclidean space. The method produces structure-preserving embeddings that maximize interpoint distances. It is primarily developed for dimensionality reduction, but has also potential applications in graph theory and various areas of physics, chemistry and engineering. Asymptotic behaviour of ridges and maxima of Gaussian kernel densities is also investigated when the kernel bandwidth approaches infinity. The results are applied to the nonlinear PCA and to finding significant maxima of such densities, which is a typical problem in visual object tracking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tutkimuksen tavoitteena oli selvittää millainen on tilintarkastajan kurinpidollinen vastuu lakisääteisessä tehtävässä. Lisäksi tutkimuksessa selvitettiin, miten tilintarkastajan vastuu voi realisoitua ja millaisia kurinpidollisia seuraamuksia tilintarkastajille määrätään Suomessa. Tutkimuksen aineistona on käytetty TILA: n valvonta-asioiden ratkaisuja vuosina 2007 - 2014. Patentti – ja rekisterihallitus on vastannut kurinpidollisista asioista vuoden 2016 alusta lähtien. Tutkimuksessa noudatetaan käsitteellistä lähestymistapaa: tilintarkastajan vastuun ohella työssä on käsitelty muun muassa lakisääteistä tilintarkastusta, hyvää tilintarkastustapaa ja ammattieettisiä periaatteita. Työ on toteutettu laadullisena tutkimuksena ja aineisto koostuu dokumenteista koskien kurinpidollisia ratkaisuja vuosina 2007 - 2014. Tutkintatapausten käsittelyssä huomiota kiinnitettiin tutkinnan aloittamisen syihin ja tutkinnan seurauksena määrättyihin sanktioihin. Tutkintaan johtaneiden syiden väliltä pyrittiin löytämään yhteisiä tekijöitä. Lisäksi huomiota kiinnitettiin tutkintatapausten ja sanktioiden määrien kehitykseen. Tarkasteluaikavälillä yleisin syy tutkinnan aloittamiselle oli hyvän tilintarkastustavan tai tilintarkastuslain vastainen toiminta. Sanktiomuodoista varoituksia annettiin hieman enemmän kuin huomautuksia, hyväksymisen peruuttamiseen päädyttiin vain kahdeksassa tapauksessa. Yli puolessa tutkintatapauksissa sanktioita ei määrätty ollenkaan. Kaiken kaikkiaan sanktioiden ja tutkintatapausten määrässä ei havaittu tapahtuneen suurta vaihtelua tarkasteluaikavälillä.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ohjelmoinnin opettaminen yleissivistävänä oppiaineena on viime aikoina herättänyt kiinnostusta Suomessa ja muualla maailmassa. Esimerkiksi Suomen opetushallituksen määrittämien, vuonna 2016 käyttöön otettavien peruskoulun opintosuunnitelman perusteiden mukaan, ohjelmointitaitoja aletaan opettaa suomalaisissa peruskouluissa ensimmäiseltä luokalta alkaen. Ohjelmointia ei olla lisäämässä omaksi oppiaineekseen, vaan sen opetuksen on tarkoitus tapahtua muiden oppiaineiden, kuten matematiikan yhteydessä. Tämä tutkimus käsittelee yleissivistävää ohjelmoinnin opetusta yleisesti, käy läpi yleisimpiä haasteita ohjelmoinnin oppimisessa ja tarkastelee erilaisten opetusmenetelmien soveltuvuutta erityisesti nuorten oppilaiden opettamiseen. Tutkimusta varten toteutettiin verkkoympäristössä toimiva, noin 9–12-vuotiaille oppilaille suunnattu graafista ohjelmointikieltä ja visuaalisuutta tehokkaasti hyödyntävä oppimissovellus. Oppimissovelluksen avulla toteutettiin alakoulun neljänsien luokkien kanssa vertailututkimus, jossa graafisella ohjelmointikielellä tapahtuvan opetuksen toimivuutta vertailtiin toiseen opetusmenetelmään, jossa oppilaat tutustuivat ohjelmoinnin perusteisiin toiminnallisten leikkien avulla. Vertailututkimuksessa kahden neljännen luokan oppilaat suorittivat samankaltaisia, ohjelmoinnin peruskäsitteisiin liittyviä ohjelmointitehtäviä molemmilla opetus-menetelmillä. Tutkimuksen tavoitteena oli selvittää alakouluoppilaiden nykyistä ohjelmointiosaamista, sitä minkälaisen vastaanoton ohjelmoinnin opetus alakouluoppilailta saa, onko erilaisilla opetusmenetelmillä merkitystä opetuksen toteutuksen kannalta ja näkyykö eri opetusmenetelmillä opetettujen luokkien oppimistuloksissa eroja. Oppilaat suhtautuivat kumpaankin opetusmenetelmään myönteisesti, ja osoittivat kiinnostusta ohjelmoinnin opiskeluun. Sisällöllisesti oppitunneille oli varattu turhan paljon materiaalia, mutta esimerkiksi yhden keskeisimmän aiheen, eli toiston käsitteen oppimisessa aktiivisilla leikeillä harjoitellut luokka osoitti huomattavasti graafisella ohjelmointikielellä harjoitellutta luokkaa parempaa osaamista oppitunnin jälkeen. Ohjelmakoodin peräkkäisyyteen liittyvä osaaminen oli neljäsluokkalaisilla hyvin hallussa jo ennen ohjelmointiharjoituksia. Aiheeseen liittyvän taustatutkimuksen ja luokkien opettajien haastatteluiden perusteella havaittiin koulujen valmiuksien opetussuunnitelmauudistuksen mukaiseen ohjelmoinnin opettamiseen olevan vielä heikolla tasolla.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relationship between organisms within an ecosystem is one of the main focuses in the study of ecology and evolution. For instance, host-parasite interactions have long been under close interest of ecology, evolutionary biology and conservation science, due to great variety of strategies and interaction outcomes. The monogenean ecto-parasites consist of a significant portion of flatworms. Gyrodactylus salaris is a monogenean freshwater ecto-parasite of Atlantic salmon (Salmo salar) whose damage can make fish to be prone to further bacterial and fungal infections. G. salaris is the only one parasite whose genome has been studied so far. The RNA-seq data analyzed in this thesis has already been annotated by using LAST. The RNA-seq data was obtained from Illumina sequencing i.e. yielded reads were assembled into 15777 transcripts. Last resulted in annotation of 46% transcripts and remaining were left unknown. This thesis work was started with whole data and annotation process was continued by the use of PANNZER, CDD and InterProScan. This annotation resulted in 56% successfully annotated sequences having parasite specific proteins identified. This thesis represents the first of Monogenean transcriptomic information which gives an important source for further research on this specie. Additionally, comparison of annotation methods interestingly revealed that description and domain based methods perform better than simple similarity search methods. Therefore it is more likely to suggest the use of these tools and databases for functional annotation. These results also emphasize the need for use of multiple methods and databases. It also highlights the need of more genomic information related to G. salaris.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.