33 resultados para Plants|zItaly|zComo (Province)
Resumo:
Repowering existing power plants by replacing coal with biomass might offer an interesting option to ease the transition from fossil fuels to renewable energy sources and promote a fur-ther expansion of bioenergy in Europe, on account of the potential to decrease greenhouse gas emissions, as well as other pollutants (SOx, NOx, etcetera). In addition, a great part of the appeal of repowering projects comes from the opportunity to reuse the vast existing invest-ment and infrastructure associated with coal-based power generation. Even so, only a limited number of experiences with repowering are found. Therefore, efforts are required to produce technical and scientific evidence to determine whether said technology might be considered feasible for its adoption within European conditions. A detailed evaluation of the technical and economic aspects of this technology constitutes a powerful tool for decision makers to define the energy future for Europe. To better illustrate this concept, a case study is analyzed. A Slovakian pulverized coal plant was used as the basis for determining the effects on perfor-mance, operation, maintenance and cost when fuel is shifted to biomass. It was found that biomass fuel properties play a crucial role in plant repowering. Furthermore, results demon-strate that this technology offers renewable energy with low pollutant emissions at the cost of reduced capacity, relatively high levelized cost of electricity and sometimes, a maintenance-intensive operation. Lastly, regardless of the fact that existing equipment can be reutilized for the most part, extensive additions/modifications may be required to ensure a safe operation and an acceptable performance.
Resumo:
This thesis reviews the role of nuclear and conventional power plants in the future energy system. The review is done by utilizing freely accesible publications in addition to generating load duration and ramping curves for Nordic energy system. As the aim of the future energy system is to reduce GHG-emissions and avoid further global warming, the need for flexible power generation increases with the increased share of intermittent renewables. The goal of this thesis is to offer extensive understanding of possibilities and restrictions that nuclear power and conventional power plants have regarding flexible and sustainable generation. As a conclusion, nuclear power is the only technology that is able to provide large scale GHG-free power output variations with good ramping values. Most of the currently operating plants are able to take part in load following as the requirement to do so is already required to be included in the plant design. Load duration and ramping curves produced prove that nuclear power is able to cover most of the annual generation variation and ramping needs in the Nordic energy system. From the conventional power generation methods, only biomass combustion can be considered GHG-free because biomass is considered carbon neutral. CFB combusted biomass has good load follow capabilities in good ramping and turndown ratios. All the other conventional power generation technologies generate GHG-emissions and therefore the use of these technologies should be reduced.
Resumo:
The purpose of this master’s thesis is to gain an understanding of passive safety systems’ role in modern nuclear reactors projects and to research the failure modes of passive decay heat removal safety systems which use phenomenon of natural circulation. Another purpose is to identify the main physical principles and phenomena which are used to establish passive safety tools in nuclear power plants. The work describes passive decay heat removal systems used in AES-2006 project and focuses on the behavior of SPOT PG system. The descriptions of the main large-scale research facilities of the passive safety systems of the AES-2006 power plant are also included. The work contains the calculations of the SPOT PG system, which was modeled with thermal-hydraulic system code TRACE. The dimensions of the calculation model are set according to the dimensions of the real SPOT PG system. In these calculations three parameters are investigated as a function of decay heat power: the pressure of the system, the natural circulation mass flow rate around the closed loop, and the level of liquid in the downcomer. The purpose of the calculations is to test the ability of the SPOT PG system to remove the decay heat from the primary side of the nuclear reactor in case of failure of one, two, or three loops out of four. The calculations show that three loops of the SPOT PG system have adequate capacity to provide the necessary level of safety. In conclusion, the work supports the view that passive systems could be widely spread in modern nuclear projects.