41 resultados para Parallel buck converter
Resumo:
Ilmastonmuutos ja fossiilisten polttoaineiden ehtyminen ovat edesauttaneet uusiutuvien energialähteiden tutkimusta huomattavasti. Lisäksi alati kasvava sähköenergian tarve lisää hajautetun sähköntuotannon ja vaihtoehtoisten energialähteiden kiinnostavuutta. Yleisimpiä hajautetun sähköntuotannon energialähteitä ovat tuulivoima, aurinkovoima ja uutena tulokkaana polttokennot. Polttokennon kytkeminen sähköverkkoon vaatii tehoelektroniikkaa, ja yleensä yksinkertaisessa polttokennosovelluksessa polttokenno kytketään galvaanisesti erottavan yksisuuntaisen DC/DC-hakkurin ja vaihtosuuntaajan kanssa sarjaan. Polttokennon rinnalla voidaan käyttää akkua tasaamaan polttokennon syöttämää jännitettä, jolloin akun ja polttokennon väliin tarvitaan kaksisuuntainen DC/DC-hakkuri, joka pystyy siirtämään energiaa molempiin suuntiin. Tässä diplomityössä on esitetty kaksisuuntaisen DC/DC-hakkurin tilayhtälökeskiarvoistusmenetelmään perustuva malli sekä mallin perusteella toteutettu virtasäätö. Tutkittava hakkuritopologia on kokosilta-tyyppinen boost-hakkuri, ja säätömenetelmä keskiarvovirtasäätö. Työn tuloksena syntyi tilayhtälömalli kaksisuuntaiselle FB boost -hakkurille sekä sen tulokelan virran säätämiseen soveltuva säädin. Säädin toimii normaalitilanteissa hyvin, mutta erikoistilanteissa, kuten hakkurin tulojännitteen äkillisessä muutostilanteessa, vaadittaisiin tehokkaampi säädin, jolla saavutettaisiin nopeampi nousuaika ilman ylitystä ja oskillointia.
Resumo:
Parallel-connected photovoltaic inverters are required in large solar plants where it is not economically or technically reasonable to use a single inverter. Currently, parallel inverters require individual isolating transformers to cut the path for the circulating current. In this doctoral dissertation, the problem is approached by attempting to minimize the generated circulating current. The circulating current is a function of the generated common-mode voltages of the parallel inverters and can be minimized by synchronizing the inverters. The synchronization has previously been achieved by a communication link. However, in photovoltaic systems the inverters may be located far apart from each other. Thus, a control free of communication is desired. It is shown in this doctoral dissertation that the circulating current can also be obtained by a common-mode voltage measurement. A control method based on a short-time switching frequency transition is developed and tested with an actual photovoltaic environment of two parallel inverters connected to two 5 kW solar arrays. Controls based on the measurement of the circulating current and the common-mode voltage are generated and tested. A communication-free method of controlling the circulating current between parallelconnected inverters is developed and verified.
Resumo:
The dissertation proposes two control strategies, which include the trajectory planning and vibration suppression, for a kinematic redundant serial-parallel robot machine, with the aim of attaining the satisfactory machining performance. For a given prescribed trajectory of the robot's end-effector in the Cartesian space, a set of trajectories in the robot's joint space are generated based on the best stiffness performance of the robot along the prescribed trajectory. To construct the required system-wide analytical stiffness model for the serial-parallel robot machine, a variant of the virtual joint method (VJM) is proposed in the dissertation. The modified method is an evolution of Gosselin's lumped model that can account for the deformations of a flexible link in more directions. The effectiveness of this VJM variant is validated by comparing the computed stiffness results of a flexible link with the those of a matrix structural analysis (MSA) method. The comparison shows that the numerical results from both methods on an individual flexible beam are almost identical, which, in some sense, provides mutual validation. The most prominent advantage of the presented VJM variant compared with the MSA method is that it can be applied in a flexible structure system with complicated kinematics formed in terms of flexible serial links and joints. Moreover, by combining the VJM variant and the virtual work principle, a systemwide analytical stiffness model can be easily obtained for mechanisms with both serial kinematics and parallel kinematics. In the dissertation, a system-wide stiffness model of a kinematic redundant serial-parallel robot machine is constructed based on integration of the VJM variant and the virtual work principle. Numerical results of its stiffness performance are reported. For a kinematic redundant robot, to generate a set of feasible joints' trajectories for a prescribed trajectory of its end-effector, its system-wide stiffness performance is taken as the constraint in the joints trajectory planning in the dissertation. For a prescribed location of the end-effector, the robot permits an infinite number of inverse solutions, which consequently yields infinite kinds of stiffness performance. Therefore, a differential evolution (DE) algorithm in which the positions of redundant joints in the kinematics are taken as input variables was employed to search for the best stiffness performance of the robot. Numerical results of the generated joint trajectories are given for a kinematic redundant serial-parallel robot machine, IWR (Intersector Welding/Cutting Robot), when a particular trajectory of its end-effector has been prescribed. The numerical results show that the joint trajectories generated based on the stiffness optimization are feasible for realization in the control system since they are acceptably smooth. The results imply that the stiffness performance of the robot machine deviates smoothly with respect to the kinematic configuration in the adjacent domain of its best stiffness performance. To suppress the vibration of the robot machine due to varying cutting force during the machining process, this dissertation proposed a feedforward control strategy, which is constructed based on the derived inverse dynamics model of target system. The effectiveness of applying such a feedforward control in the vibration suppression has been validated in a parallel manipulator in the software environment. The experimental study of such a feedforward control has also been included in the dissertation. The difficulties of modelling the actual system due to the unknown components in its dynamics is noticed. As a solution, a back propagation (BP) neural network is proposed for identification of the unknown components of the dynamics model of the target system. To train such a BP neural network, a modified Levenberg-Marquardt algorithm that can utilize an experimental input-output data set of the entire dynamic system is introduced in the dissertation. Validation of the BP neural network and the modified Levenberg- Marquardt algorithm is done, respectively, by a sinusoidal output approximation, a second order system parameters estimation, and a friction model estimation of a parallel manipulator, which represent three different application aspects of this method.
Resumo:
Kartta kuuluu A. E. Nordenskiöldin kokoelmaan
Resumo:
This thesis presents a novel design paradigm, called Virtual Runtime Application Partitions (VRAP), to judiciously utilize the on-chip resources. As the dark silicon era approaches, where the power considerations will allow only a fraction chip to be powered on, judicious resource management will become a key consideration in future designs. Most of the works on resource management treat only the physical components (i.e. computation, communication, and memory blocks) as resources and manipulate the component to application mapping to optimize various parameters (e.g. energy efficiency). To further enhance the optimization potential, in addition to the physical resources we propose to manipulate abstract resources (i.e. voltage/frequency operating point, the fault-tolerance strength, the degree of parallelism, and the configuration architecture). The proposed framework (i.e. VRAP) encapsulates methods, algorithms, and hardware blocks to provide each application with the abstract resources tailored to its needs. To test the efficacy of this concept, we have developed three distinct self adaptive environments: (i) Private Operating Environment (POE), (ii) Private Reliability Environment (PRE), and (iii) Private Configuration Environment (PCE) that collectively ensure that each application meets its deadlines using minimal platform resources. In this work several novel architectural enhancements, algorithms and policies are presented to realize the virtual runtime application partitions efficiently. Considering the future design trends, we have chosen Coarse Grained Reconfigurable Architectures (CGRAs) and Network on Chips (NoCs) to test the feasibility of our approach. Specifically, we have chosen Dynamically Reconfigurable Resource Array (DRRA) and McNoC as the representative CGRA and NoC platforms. The proposed techniques are compared and evaluated using a variety of quantitative experiments. Synthesis and simulation results demonstrate VRAP significantly enhances the energy and power efficiency compared to state of the art.
Resumo:
Medium-voltage motor drives extend the power rating of AC motor drives in industrial applications. Multilevel converters are gaining an ever-stronger foothold in this field. This doctoral dissertation introduces a new topology to the family of modular multilevel converters: the modular double-cascade converter. The modularity of the converter is enabled by the application of multiwinding mediumfrequency isolation transformers. Owing to the innovative transformer link, the converter presents many advantageous properties at a concept level: modularity, high input and output power quality, small footprint, and wide variety of applications, among others. Further, the research demonstrates that the transformer link also plays a key role in the disadvantages of the topology. An extensive simulation study on the new converter is performed. The focus of the simulation study is on the development of control algorithms and the feasibility of the topology. In particular, the circuit and control concepts used in the grid interface, the coupling configurations of the load inverter, and the transformer link operation are thoroughly investigated. Experimental results provide proof-of-concept results on the operation principle of the converter. This work concludes a research collaboration project on multilevel converters between LUT and Vacon Plc. The project was active from 2009 until 2014.
Resumo:
Fluid handling systems such as pump and fan systems are found to have a significant potential for energy efficiency improvements. To deliver the energy saving potential, there is a need for easily implementable methods to monitor the system output. This is because information is needed to identify inefficient operation of the fluid handling system and to control the output of the pumping system according to process needs. Model-based pump or fan monitoring methods implemented in variable speed drives have proven to be able to give information on the system output without additional metering; however, the current model-based methods may not be usable or sufficiently accurate in the whole operation range of the fluid handling device. To apply model-based system monitoring in a wider selection of systems and to improve the accuracy of the monitoring, this paper proposes a new method for pump and fan output monitoring with variable-speed drives. The method uses a combination of already known operating point estimation methods. Laboratory measurements are used to verify the benefits and applicability of the improved estimation method, and the new method is compared with five previously introduced model-based estimation methods. According to the laboratory measurements, the new estimation method is the most accurate and reliable of the model-based estimation methods.
Resumo:
The whole research of the current Master Thesis project is related to Big Data transfer over Parallel Data Link and my main objective is to assist the Saint-Petersburg National Research University ITMO research team to accomplish this project and apply Green IT methods for the data transfer system. The goal of the team is to transfer Big Data by using parallel data links with SDN Openflow approach. My task as a team member was to compare existing data transfer applications in case to verify which results the highest data transfer speed in which occasions and explain the reasons. In the context of this thesis work a comparison between 5 different utilities was done, which including Fast Data Transfer (FDT), BBCP, BBFTP, GridFTP, and FTS3. A number of scripts where developed which consist of creating random binary data to be incompressible to have fair comparison between utilities, execute the Utilities with specified parameters, create log files, results, system parameters, and plot graphs to compare the results. Transferring such an enormous variety of data can take a long time, and hence, the necessity appears to reduce the energy consumption to make them greener. In the context of Green IT approach, our team used Cloud Computing infrastructure called OpenStack. It’s more efficient to allocated specific amount of hardware resources to test different scenarios rather than using the whole resources from our testbed. Testing our implementation with OpenStack infrastructure results that the virtual channel does not consist of any traffic and we can achieve the highest possible throughput. After receiving the final results we are in place to identify which utilities produce faster data transfer in different scenarios with specific TCP parameters and we can use them in real network data links.
Resumo:
Energy efficiency is an important topic when considering electric motor drives market. Although more efficient electric motor types are available, the induction motor remains as the most common industrial motor type. IEC methods for determining losses and efficiency of converter-fed induction motors were introduced recently with the release of technical specification IEC/TS 60034-2-3. Determining the induction motor losses with IEC/TS 60034-2-3 method 2-3-A and assessing the practical applicability of the method are the main interests of this study. The method 2-3-A introduces a specific test converter waveform to be used in the measurements. Differences between the induction motor losses with a test converter supply, and with a DTC converter supply are investigated. In the IEC methods, the tests are run at motor rated fundamental voltage, which, in practice, requires the frequency converter to be fed with a risen input voltage. In this study, the tests are run on both frequency converters with artificially risen converter input voltage, resulting in rated motor fundamental input voltage as required by IEC. For comparison, the tests are run with both converters on normal grid input voltage supply, which results in lower motor fundamental voltage and reduced flux level, but should be more relevant from practical point of view. According to IEC method 2-3-A, tests are run at rated motor load, and to ensure comparability of the results, the rated load is used in the grid-fed converter measurements, although motor is overloaded while producing the rated torque at reduced flux level. The IEC 2-3-A method requires also sinusoidal supply test results with IEC method 2-1-1B. Therefore, the induction motor losses with the recently updated IEC 60034-2-1 method 2-1-1B are determined at the motor rated voltage, but also at two lower motor voltages, which are according to the output fundamental voltages of the two network-supplied converters. The method 2-3-A was found to be complex to apply but the results were stable. According to the results, the method 2-3-A and the test converter supply are usable for comparing losses and efficiency of different induction motors at the operating point of rated voltage, rated frequency and rated load, but the measurements do not give any prediction of the motor losses at final application. One might therefore strongly criticize the method’s main principles. It seems, that the release of IEC 60034-2-3 as a technical specification instead of a final standard for now was justified, since the practical relevance of the main method is questionable.
Resumo:
Preventive maintenance of frequency converters has been based on pre-planned replace-ment of wearing or ageing components. Exchange intervals follow component life-time expectations which are based on empirical knowledge or schedules defined by manufac-turer. However, the lifetime of a component can vary significantly, because drives are used in very different operating environments and applications. The main objective of the research was to provide information on methods, i.e. how in-verter's operating condition can be measured reliably under field conditions. At first, the research focused on critical components such as current transducers, IGBTs and DC link capacitor bank, because these aging have already been identified. Of these, the DC link capacitor measurement method was selected for closer examination. With this method, the total capacitance and its total series resistance can be measured. The suitability of the measuring procedure was estimated on the basis of practical measurements. The research was made by using so called triangulation method, including a literature review, simulations and practical measurements. Based on the results, the new measu-rement method seems suitable with some reservations to practical measurements. How-ever, the measuring method should be further developed in order to improve its reliability.