39 resultados para Normalization constraint


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examines the aftermath of mass violence in local communities. Two rampage school shootings that occurred in Finland are analyzed and compared to examine the ways in which communities experience, make sense of, and recover from sudden acts of mass violence. The studied cases took place at Jokela High School, in southern Finland, and at a polytechnic university in Kauhajoki, in western Finland, in 2007 and 2008 respectively. Including the perpetrators, 20 people lost their lives in these shootings. These incidents are part of the global school shooting phenomenon with increasing numbers of incidents occurring in the last two decades, mostly in North America and Europe. The dynamic of solidarity and conflict is one of the main themes of this study. It builds upon previous research on mass violence and disasters which suggests that solidarity increases after a crisis, and that this increase is often followed by conflict in the affected communities. This dissertation also draws from theoretical discussions on remembering, narrating, and commemorating traumatic incidents, as well as the idea of a cultural trauma process in which the origins and consequences of traumas are negotiated alongside collective identities. Memorialization practices and narratives about what happened are vital parts of the social memory of crises and disasters, and their inclusive and exclusive characteristics are discussed in this study. The data include two types of qualitative interviews; focused interviews with 11 crisis workers, and focused, narrative interviews with 21 residents of Jokela and 22 residents of Kauhajoki. A quantitative mail survey of the Jokela population (N=330) provided data used in one of the research articles. The results indicate that both communities experienced a process of simultaneous solidarity and conflict after the shootings. In Jokela, the community was constructed as a victim, and public expressions of solidarity and memorialization were promoted as part of the recovery process. In Kauhajoki, the community was portrayed as an incidental site of mass violence, and public expressions of solidarity by distant witnesses were labeled as unnecessary and often criticized. However, after the shooting, the community was somewhat united in its desire to avoid victimization and a prolonged liminal period. This can be understood as a more modest and invisible process of “silent solidarity”. The processes of enforced solidarity were partly made possible by exclusion. In some accounts, the family of the perpetrator in Jokela was excluded from the community. In Kauhajoki, the whole incident was externalized. In both communities, this exclusion included associating the shooting events, certain places, and certain individuals with the concept of evil, which helped to understand and explain the inconceivable incidents. Differences concerning appropriate emotional orientations, memorialization practices and the pace of the recovery created conflict in both communities. In Jokela, attitudes towards the perpetrator and his family were also a source of friction. Traditional gender roles regarding the expression of emotions remained fairly stable after the school shootings, but in an exceptional situation, conflicting interpretations arose concerning how men and women should express emotion. The results from the Jokela community also suggest that while increased solidarity was seen as important part of the recovery process, some negative effects such as collective guilt, group divisions, and stigmatization also emerged. Based on the results, two simultaneous strategies that took place after mass violence were identified; one was a process of fast-paced normalization, and the other was that of memorialization. Both strategies are ways to restore the feeling of security shattered by violent incidents. The Jokela community emphasized remembering while the Kauhajoki community turned more to the normalization strategy. Both strategies have positive and negative consequences. It is important to note that the tendency to memorialize is not the only way of expressing solidarity, as fast normalization includes its own kind of solidarity and helps prevent the negative consequences of intense solidarity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dissertation proposes two control strategies, which include the trajectory planning and vibration suppression, for a kinematic redundant serial-parallel robot machine, with the aim of attaining the satisfactory machining performance. For a given prescribed trajectory of the robot's end-effector in the Cartesian space, a set of trajectories in the robot's joint space are generated based on the best stiffness performance of the robot along the prescribed trajectory. To construct the required system-wide analytical stiffness model for the serial-parallel robot machine, a variant of the virtual joint method (VJM) is proposed in the dissertation. The modified method is an evolution of Gosselin's lumped model that can account for the deformations of a flexible link in more directions. The effectiveness of this VJM variant is validated by comparing the computed stiffness results of a flexible link with the those of a matrix structural analysis (MSA) method. The comparison shows that the numerical results from both methods on an individual flexible beam are almost identical, which, in some sense, provides mutual validation. The most prominent advantage of the presented VJM variant compared with the MSA method is that it can be applied in a flexible structure system with complicated kinematics formed in terms of flexible serial links and joints. Moreover, by combining the VJM variant and the virtual work principle, a systemwide analytical stiffness model can be easily obtained for mechanisms with both serial kinematics and parallel kinematics. In the dissertation, a system-wide stiffness model of a kinematic redundant serial-parallel robot machine is constructed based on integration of the VJM variant and the virtual work principle. Numerical results of its stiffness performance are reported. For a kinematic redundant robot, to generate a set of feasible joints' trajectories for a prescribed trajectory of its end-effector, its system-wide stiffness performance is taken as the constraint in the joints trajectory planning in the dissertation. For a prescribed location of the end-effector, the robot permits an infinite number of inverse solutions, which consequently yields infinite kinds of stiffness performance. Therefore, a differential evolution (DE) algorithm in which the positions of redundant joints in the kinematics are taken as input variables was employed to search for the best stiffness performance of the robot. Numerical results of the generated joint trajectories are given for a kinematic redundant serial-parallel robot machine, IWR (Intersector Welding/Cutting Robot), when a particular trajectory of its end-effector has been prescribed. The numerical results show that the joint trajectories generated based on the stiffness optimization are feasible for realization in the control system since they are acceptably smooth. The results imply that the stiffness performance of the robot machine deviates smoothly with respect to the kinematic configuration in the adjacent domain of its best stiffness performance. To suppress the vibration of the robot machine due to varying cutting force during the machining process, this dissertation proposed a feedforward control strategy, which is constructed based on the derived inverse dynamics model of target system. The effectiveness of applying such a feedforward control in the vibration suppression has been validated in a parallel manipulator in the software environment. The experimental study of such a feedforward control has also been included in the dissertation. The difficulties of modelling the actual system due to the unknown components in its dynamics is noticed. As a solution, a back propagation (BP) neural network is proposed for identification of the unknown components of the dynamics model of the target system. To train such a BP neural network, a modified Levenberg-Marquardt algorithm that can utilize an experimental input-output data set of the entire dynamic system is introduced in the dissertation. Validation of the BP neural network and the modified Levenberg- Marquardt algorithm is done, respectively, by a sinusoidal output approximation, a second order system parameters estimation, and a friction model estimation of a parallel manipulator, which represent three different application aspects of this method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The desire to create a statistical or mathematical model, which would allow predicting the future changes in stock prices, was born many years ago. Economists and mathematicians are trying to solve this task by applying statistical analysis and physical laws, but there are still no satisfactory results. The main reason for this is that a stock exchange is a non-stationary, unstable and complex system, which is influenced by many factors. In this thesis the New York Stock Exchange was considered as the system to be explored. A topological analysis, basic statistical tools and singular value decomposition were conducted for understanding the behavior of the market. Two methods for normalization of initial daily closure prices by Dow Jones and S&P500 were introduced and applied for further analysis. As a result, some unexpected features were identified, such as a shape of distribution of correlation matrix, a bulk of which is shifted to the right hand side with respect to zero. Also non-ergodicity of NYSE was confirmed graphically. It was shown, that singular vectors differ from each other by a constant factor. There are for certain results no clear conclusions from this work, but it creates a good basis for the further analysis of market topology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ohjelmistotestauksen merkitys on kasvanut sen mukaan mitä enemmän ohjelmisto-tuotteet vaikuttavat jokapäiväisesseen elämämme. Tämän vuoksi yritysten investointien ja laadunvarmentamisen yhteys on ilmeinen. Organisaatiot panostavat yhä enemmän ei–funktionaaliseen testaukseen, kuten turvallisuuden, suorituskyvyn ja käytettävyyden testaamiseen. Tämän työn tarkoituksena on tutkia ohjelmistotestauksen nykytilannetta Suomessa. Syy tähän on uudistaa ja parantaa ohjelmistotestauksen kurssitarjontaa Turun yliopistossa vastaamaan parhaalla mahdollisella tavalla yritysten tarvetta. Opinnäyte on toteutettu replikaatio-tutkimuksena. Pääosa kyselystä sisältää kysymyksiä ohjelmistotestauksen menetelmistä ja työkaluista testausprosessin toimintojen aikana. Lisäksi on yleisiä kysymyksiä yrityksistä ja niiden ohjelmistotestausympäristöistä. Kyselyssä otetaan myös kantaa yritysten käyttämiin monenlaisiin testaus-tasoihin, -tyyppeihin ja testauksessa kohdattuihin haasteisiin. Tämä opinnäyte perustuu testausprosessistandardeihin. Ohjelmistotestausstandardit ovat keskeisessä asemassa tässä työssä, vaikka ne ovat olleet viime aikoina vahvan kritiikin kohteena. Epäilys standardien välttämättömyyteen on syntynyt muutoksista ohjelmistokehityksessä. Tämä työ esittelee tulokset ohjelmistotestauksen käytännöistä. Tuloksia on verrattu aiheeseen liittyvän aiemman kyselyn (Lee, Kang, & Lee, 2011) tuloksiin. Ajanpuutteen havaitaan olevan suuri haaste ohjelmistotestauksessa. Ketterä ohjelmistokehitys on saavuttanut suosiota kaikissa vastaajien yrityksissä. Testauksen menetelmät ja työkalut testauksen arviointiin, suunnitteluun ja raportointiin ovat hyvin vähäisessä käytössä. Toisaalta testauksen menetelmien ja työkalujen käyttö automaattiseen testauksen toteuttamiseen ja virheiden hallintaan on lisääntynyt. Järjestelmä-, hyväksyntä-, yksikkö- ja integraatiotestaus ovat käytössä kaikkien vastaajien edustamissa yrityksissä. Kaikkien vastaajien mielestä regressio- sekä tutkiva- ja ei-funktionaalinen testaus ovat tärkeitä tekniikoita.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IoT consists of essentially thousands of tiny sensor nodes interconnected to the internet, each one of which executes the programmed functions under memory and power limita- tions. The sensor nodes are distributed mainly for gathering data in various situations. IoT envisions the future technologies such as e-health, smart city, auto-mobiles automa- tion, construction sites automation, and smart home. Secure communication of data under memory and energy constraints is major challenge in IoT. Authentication is the first and important phase of secure communication. This study presents a protocol to authenticate resource constraint devices in physical proximity by solely using the shared wireless communication interfaces. This model of authentication only relies on the abundance of ambient radio signals to authenticate in less than a second. To evaluate the designed protocol, SkyMotes are emulated in a network environment simulated by Contiki/COOJA. Results presented during this study proves that this approach is immune against passive and active attacks. An adversary located as near as two meters can be identified in less than a second with minimal expense of energy. Since, only radio device is used as required hardware for the authentication, this technique is scalable and interoperable to heterogeneous nature of IoT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In any manufacturing system, there are many factors that are affecting and limiting the capacity of the entire system. This thesis addressed a study on how to improve the production capacity in a Finnish company (Viljavuuspalvelu Oy) through different methods like bottleneck analysis, Overall Equipment Effectiveness (OEE), and Just in Time production. Four analyzing methods have been studied in order to detect the bottleneck machine in Viljavuuspalvelu Oy. The results shows that the bottleneck machine in the industrial area that constraint the production is the grinding machine while the bottleneck machine in the laboratory section is the photometry machine. In addition, the Overall Equipment Effectiveness (OEE) of the entire system of the studied case was calculated and it has been found that the OEE of the Viljavuuspalvelu Oy is 35.75%. Moreover, two methods on how to increase the OEE were studied and it was shown that either the total output of the company should be 1254 samples/shift in order to have an OEE around 85% which is considered as a world class or the Ideal run rate should be 1.45 pieces/minute. In addition, some realistic methods are applied based on the finding in this thesis to increase the OEE factor in the company and in one realistic method the % OEE has increase to 62.59%. Finally, an explanation on how to implement the Just in Time production in Viljavuuspalvelu Oy has been studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation describes an approach for developing a real-time simulation for working mobile vehicles based on multibody modeling. The use of multibody modeling allows comprehensive description of the constrained motion of the mechanical systems involved and permits real-time solving of the equations of motion. By carefully selecting the multibody formulation method to be used, it is possible to increase the accuracy of the multibody model while at the same time solving equations of motion in real-time. In this study, a multibody procedure based on semi-recursive and augmented Lagrangian methods for real-time dynamic simulation application is studied in detail. In the semirecursive approach, a velocity transformation matrix is introduced to describe the dependent coordinates into relative (joint) coordinates, which reduces the size of the generalized coordinates. The augmented Lagrangian method is based on usage of global coordinates and, in that method, constraints are accounted using an iterative process. A multibody system can be modelled as either rigid or flexible bodies. When using flexible bodies, the system can be described using a floating frame of reference formulation. In this method, the deformation mode needed can be obtained from the finite element model. As the finite element model typically involves large number of degrees of freedom, reduced number of deformation modes can be obtained by employing model order reduction method such as Guyan reduction, Craig-Bampton method and Krylov subspace as shown in this study The constrained motion of the working mobile vehicles is actuated by the force from the hydraulic actuator. In this study, the hydraulic system is modeled using lumped fluid theory, in which the hydraulic circuit is divided into volumes. In this approach, the pressure wave propagation in the hoses and pipes is neglected. The contact modeling is divided into two stages: contact detection and contact response. Contact detection determines when and where the contact occurs, and contact response provides the force acting at the collision point. The friction between tire and ground is modelled using the LuGre friction model, which describes the frictional force between two surfaces. Typically, the equations of motion are solved in the full matrices format, where the sparsity of the matrices is not considered. Increasing the number of bodies and constraint equations leads to the system matrices becoming large and sparse in structure. To increase the computational efficiency, a technique for solution of sparse matrices is proposed in this dissertation and its implementation demonstrated. To assess the computing efficiency, augmented Lagrangian and semi-recursive methods are implemented employing a sparse matrix technique. From the numerical example, the results show that the proposed approach is applicable and produced appropriate results within the real-time period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this master's thesis is to develop a two-dimensional drift-di usion model, which describes charge transport in organic solar cells. The main bene t of a two-dimensional model compared to a one-dimensional one is the inclusion of the nanoscale morphology of the active layer of a bulk heterojunction solar cell. The developed model was used to study recombination dynamics at the donor-acceptor interface. In some cases, it was possible to determine e ective parameters, which reproduce the results of the two-dimensional model in the one-dimensional case. A summary of the theory of charge transport in semiconductors was presented and discussed in the context of organic materials. Additionally, the normalization and discretization procedures required to nd a numerical solution to the charge transport problem were outlined. The charge transport problem was solved by implementing an iterative scheme called successive over-relaxation. The obtained solution is given as position-dependent electric potential, free charge carrier concentrations and current densities in the active layer. An interfacial layer, separating the pure phases, was introduced in order to describe charge dynamics occurring at the interface between the donor and acceptor. For simplicity, an e ective generation of free charge carriers in the interfacial layer was implemented. The pure phases simply act as transport layers for the photogenerated charges. Langevin recombination was assumed in the two-dimensional model and an analysis of the apparent recombination rate in the one-dimensional case is presented. The recombination rate in a two-dimensional model is seen to e ectively look like reduced Langevin recombination at open circuit. Replicating the J-U curves obtained in the two-dimensional model is, however, not possible by introducing a constant reduction factor in the Langevin recombination rate. The impact of an acceptor domain in the pure donor phase was investigated. Two cases were considered, one where the acceptor domain is isolated and another where it is connected to the bulk of the acceptor. A comparison to the case where no isolated domains exist was done in order to quantify the observed reduction in the photocurrent. The results show that all charges generated at the isolated domain are lost to recombination, but the domain does not have a major impact on charge transport. Trap-assisted recombination at interfacial trap states was investigated, as well as the surface dipole caused by the trapped charges. A theoretical expression for the ideality factor n_id as a function of generation was derived and shown to agree with simulation data. When the theoretical expression was fitted to simulation data, no interface dipole was observed.