32 resultados para Non linear control
Resumo:
In the network era, creative achievements like innovations are more and more often created in interaction among different actors. The complexity of today‘s problems transcends the individual human mind, requiring not only individual but also collective creativity. In collective creativity, it is impossible to trace the source of new ideas to an individual. Instead, creative activity emerges from the collaboration and contribution of many individuals, thereby blurring the contribution of specific individuals in creating ideas. Collective creativity is often associated with diversity of knowledge, skills, experiences and perspectives. Collaboration between diverse actors thus triggers creativity and gives possibilities for collective creativity. This dissertation investigates collective creativity in the context of practice-based innovation. Practice-based innovation processes are triggered by problem setting in a practical context and conducted in non-linear processes utilising scientific and practical knowledge production and creation in cross-disciplinary innovation networks. In these networks diversity or distances between innovation actors are essential. Innovation potential may be found in exploiting different kinds of distances. This dissertation presents different kinds of distances, such as cognitive, functional and organisational which could be considered as sources of creativity and thus innovation. However, formation and functioning of these kinds of innovation networks can be problematic. Distances between innovating actors may be so great that a special interpretation function is needed – that is, brokerage. This dissertation defines factors that enhance collective creativity in practice-based innovation and especially in the fuzzy front end phase of innovation processes. The first objective of this dissertation is to study individual and collective creativity at the employee level and identify those factors that support individual and collective creativity in the organisation. The second objective is to study how organisations use external knowledge to support collective creativity in their innovation processes in open multi-actor innovation. The third objective is to define how brokerage functions create possibilities for collective creativity especially in the context of practice-based innovation. The research objectives have been studied through five substudies using a case-study strategy. Each substudy highlights various aspects of creativity and collective creativity. The empirical data consist of materials from innovation projects arranged in the Lahti region, Finland, or materials from the development of innovation methods in the Lahti region. The Lahti region has been chosen as the research context because the innovation policy of the region emphasises especially the promotion of practice-based innovations. The results of this dissertation indicate that all possibilities of collective creativity are not utilised in internal operations of organisations. The dissertation introduces several factors that could support collective creativity in organisations. However, creativity as a social construct is understood and experienced differently in different organisations, and these differences should be taken into account when supporting creativity in organisations. The increasing complexity of most potential innovations requires collaborative creative efforts that often exceed the boundaries of the organisation and call for the involvement of external expertise. In practice-based innovation different distances are considered as sources of creativity. This dissertation gives practical implications on how it is possible to exploit different kinds of distances knowingly. It underlines especially the importance of brokerage functions in open, practice-based innovation in order to create possibilities for collective creativity. As a contribution of this dissertation, a model of brokerage functions in practice-based innovation is formulated. According to the model, the results and success of brokerage functions are based on the context of brokerage as well as the roles, tasks, skills and capabilities of brokers. The brokerage functions in practice-based innovation are also possible to divide into social and cognitive brokerage.
Resumo:
In this work mathematical programming models for structural and operational optimisation of energy systems are developed and applied to a selection of energy technology problems. The studied cases are taken from industrial processes and from large regional energy distribution systems. The models are based on Mixed Integer Linear Programming (MILP), Mixed Integer Non-Linear Programming (MINLP) and on a hybrid approach of a combination of Non-Linear Programming (NLP) and Genetic Algorithms (GA). The optimisation of the structure and operation of energy systems in urban regions is treated in the work. Firstly, distributed energy systems (DES) with different energy conversion units and annual variations of consumer heating and electricity demands are considered. Secondly, district cooling systems (DCS) with cooling demands for a large number of consumers are studied, with respect to a long term planning perspective regarding to given predictions of the consumer cooling demand development in a region. The work comprises also the development of applications for heat recovery systems (HRS), where paper machine dryer section HRS is taken as an illustrative example. The heat sources in these systems are moist air streams. Models are developed for different types of equipment price functions. The approach is based on partitioning of the overall temperature range of the system into a number of temperature intervals in order to take into account the strong nonlinearities due to condensation in the heat recovery exchangers. The influence of parameter variations on the solutions of heat recovery systems is analysed firstly by varying cost factors and secondly by varying process parameters. Point-optimal solutions by a fixed parameter approach are compared to robust solutions with given parameter variation ranges. In the work enhanced utilisation of excess heat in heat recovery systems with impingement drying, electricity generation with low grade excess heat and the use of absorption heat transformers to elevate a stream temperature above the excess heat temperature are also studied.