37 resultados para Model of semantic field
Resumo:
As increasing efficiency of a wind turbine gearbox, more power can be transferred from rotor blades to generator and less power is used to cause wear and heating in the gearbox. By using a simulation model, behavior of the gearbox can be studied before creating expensive prototypes. The objective of the thesis is to model a wind turbine gearbox and its lubrication system to study power losses and heat transfer inside the gearbox and to study the simulation methods of the used software. Software used to create the simulation model is Siemens LMS Imagine.Lab AMESim, which can be used to create one-dimensional mechatronic system simulation models from different fields of engineering. When combining components from different libraries it is possible to create a simulation model, which includes mechanical, thermal and hydraulic models of the gearbox. Results for mechanical, thermal, and hydraulic simulations are presented in the thesis. Due to the large scale of the wind turbine gearbox and the amount of power transmitted, power loss calculations from AMESim software are inaccurate and power losses are modelled as constant efficiency for each gear mesh. Starting values for simulation in thermal and hydraulic simulations were chosen from test measurements and from empirical study as compact and complex design of gearbox prevents accurate test measurements. In further studies to increase the accuracy of the simulation model, components used for power loss calculations needs to be modified and values for unknown variables are needed to be solved through accurate test measurements.
Resumo:
In the new age of information technology, big data has grown to be the prominent phenomena. As information technology evolves, organizations have begun to adopt big data and apply it as a tool throughout their decision-making processes. Research on big data has grown in the past years however mainly from a technical stance and there is a void in business related cases. This thesis fills the gap in the research by addressing big data challenges and failure cases. The Technology-Organization-Environment framework was applied to carry out a literature review on trends in Business Intelligence and Knowledge management information system failures. A review of extant literature was carried out using a collection of leading information system journals. Academic papers and articles on big data, Business Intelligence, Decision Support Systems, and Knowledge Management systems were studied from both failure and success aspects in order to build a model for big data failure. I continue and delineate the contribution of the Information System failure literature as it is the principal dynamics behind technology-organization-environment framework. The gathered literature was then categorised and a failure model was developed from the identified critical failure points. The failure constructs were further categorized, defined, and tabulated into a contextual diagram. The developed model and table were designed to act as comprehensive starting point and as general guidance for academics, CIOs or other system stakeholders to facilitate decision-making in big data adoption process by measuring the effect of technological, organizational, and environmental variables with perceived benefits, dissatisfaction and discontinued use.
Resumo:
Finnish Defence Studies is published under the auspices of the War College, and the contributions reflect the fields of research and teaching of the College. Finnish Defence Studies will occasionally feature documentation on Finnish Security Policy. Views expressed are those of the authors and do not necessarily imply endorsement by the War College.
Resumo:
In the new age of information technology, big data has grown to be the prominent phenomena. As information technology evolves, organizations have begun to adopt big data and apply it as a tool throughout their decision-making processes. Research on big data has grown in the past years however mainly from a technical stance and there is a void in business related cases. This thesis fills the gap in the research by addressing big data challenges and failure cases. The Technology-Organization-Environment framework was applied to carry out a literature review on trends in Business Intelligence and Knowledge management information system failures. A review of extant literature was carried out using a collection of leading information system journals. Academic papers and articles on big data, Business Intelligence, Decision Support Systems, and Knowledge Management systems were studied from both failure and success aspects in order to build a model for big data failure. I continue and delineate the contribution of the Information System failure literature as it is the principal dynamics behind technology-organization-environment framework. The gathered literature was then categorised and a failure model was developed from the identified critical failure points. The failure constructs were further categorized, defined, and tabulated into a contextual diagram. The developed model and table were designed to act as comprehensive starting point and as general guidance for academics, CIOs or other system stakeholders to facilitate decision-making in big data adoption process by measuring the effect of technological, organizational, and environmental variables with perceived benefits, dissatisfaction and discontinued use.